$\require{physics}\newcommand{\cbrt}[1]{\sqrt[3]{#1}}\newcommand{\sgn}{\text{sgn}}\newcommand{\ii}[1]{\textit{#1}}\newcommand{\eps}{\varepsilon}\newcommand{\EE}{\mathbb E}\newcommand{\PP}{\mathbb P}\newcommand{\Var}{\mathrm{Var}}\newcommand{\Cov}{\mathrm{Cov}}\newcommand{\pperp}{\perp\kern-6pt\perp}\newcommand{\LL}{\mathcal{L}}\newcommand{\pa}{\partial}\newcommand{\AAA}{\mathscr{A}}\newcommand{\BBB}{\mathscr{B}}\newcommand{\CCC}{\mathscr{C}}\newcommand{\DDD}{\mathscr{D}}\newcommand{\EEE}{\mathscr{E}}\newcommand{\FFF}{\mathscr{F}}\newcommand{\WFF}{\widetilde{\FFF}}\newcommand{\GGG}{\mathscr{G}}\newcommand{\HHH}{\mathscr{H}}\newcommand{\PPP}{\mathscr{P}}\newcommand{\Ff}{\mathcal{F}}\newcommand{\Gg}{\mathcal{G}}\newcommand{\Hh}{\mathbb{H}}\DeclareMathOperator{\ess}{ess}\newcommand{\CC}{\mathbb C}\newcommand{\FF}{\mathbb F}\newcommand{\NN}{\mathbb N}\newcommand{\QQ}{\mathbb Q}\newcommand{\RR}{\mathbb R}\newcommand{\ZZ}{\mathbb Z}\newcommand{\KK}{\mathbb K}\newcommand{\SSS}{\mathbb S}\newcommand{\II}{\mathbb I}\newcommand{\conj}[1]{\overline{#1}}\DeclareMathOperator{\cis}{cis}\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}\newcommand{\ceil}[1]{\left\lceil #1 \right\rceil}\DeclareMathOperator*{\range}{range}\DeclareMathOperator*{\nul}{null}\DeclareMathOperator*{\Tr}{Tr}\DeclareMathOperator*{\tr}{Tr}\newcommand{\id}{1\!\!1}\newcommand{\Id}{1\!\!1}\newcommand{\der}{\ \mathrm {d}}\newcommand{\Zc}[1]{\ZZ / #1 \ZZ}\newcommand{\Zm}[1]{\left(\ZZ / #1 \ZZ\right)^\times}\DeclareMathOperator{\Hom}{Hom}\DeclareMathOperator{\End}{End}\newcommand{\GL}{\mathbb{GL}}\newcommand{\SL}{\mathbb{SL}}\newcommand{\SO}{\mathbb{SO}}\newcommand{\OO}{\mathbb{O}}\newcommand{\SU}{\mathbb{SU}}\newcommand{\U}{\mathbb{U}}\newcommand{\Spin}{\mathrm{Spin}}\newcommand{\Cl}{\mathrm{Cl}}\newcommand{\gr}{\mathrm{gr}}\newcommand{\gl}{\mathfrak{gl}}\newcommand{\sl}{\mathfrak{sl}}\newcommand{\so}{\mathfrak{so}}\newcommand{\su}{\mathfrak{su}}\newcommand{\sp}{\mathfrak{sp}}\newcommand{\uu}{\mathfrak{u}}\newcommand{\fg}{\mathfrak{g}}\newcommand{\hh}{\mathfrak{h}}\DeclareMathOperator{\Ad}{Ad}\DeclareMathOperator{\ad}{ad}\DeclareMathOperator{\Rad}{Rad}\DeclareMathOperator{\im}{im}\renewcommand{\BB}{\mathcal{B}}\newcommand{\HH}{\mathcal{H}}\DeclareMathOperator{\Lie}{Lie}\DeclareMathOperator{\Mat}{Mat}\DeclareMathOperator{\span}{span}\DeclareMathOperator{\proj}{proj}$
This is a [[homepage]] for Lie algebras.
This can be learned independently from [[Lie/Lie Groups]].
[[A story of Liers]] (WIP!)
>[!idea]
>Lie algebras are all taken to be finite dimensional by default!
>[!idea]
>Writing $\fg$ gets tiring if objects are all algebras by default. So we'll just write $L$.
- [[Lie Algebra]]
# Enumerating the Lie Algebras
When enumerating the operators over a vector space, we diagonalize and discuss eigenvalues.
When enumerating the lie algebras (which are just $(2,1)$ tensors!), we want to diagonalize somehow. The way is called a Cartan Subalgebra.
- [[Cartan Subalgebra]]
- [[Representation Theory Words]]
- [[Casimir Element]]
- [[Weyls Theorem]]
- [[SL2 Worked example]]
- [[Root Space Decomposition]]
Everything else:
- [[Classification of Simple Lie Algebras]]
- See [[Simple Lie Algebra Data Page]]
Quantum Field Theory Crash-Course, for fun
Wait a minute, I need to know this.
- [[Intuitive rephrasing with Physics]]
Connecting Root systems harder to Lie algebras:
- [[RS-LA Isomorphism Theorem]]
# Enumerating the Representations
- [[Verma Module]]
- [[Characters in Lie Groups]]
- [[Weyl Character Formula]]
- [[Weyl Dimension Formula]]
- [[All finite irreps are main diagonals]]
In addition to the WCF, the main scaffold to classify representations of complex simple Lie algebras are:
- [[Minuscule Weights]] (Inessential, can be read during/after $\GL_n(\CC)$)
# Representation Theory of $\GL_n(\CC)$
Young Tablueax, the things you saw at the end of QFT2, they're all here. We really got to learn this.
- [[Representations of SL]]
- [[Representations of GL]]
- [[Schur-Weyl Duality]]
- [[Schur Functors]]
- [[Frobenius Character Formula]]
- [[Howe Duality]]
- [[Fundamental Theorem of Invariant Theory]]
# Representation Theory of other Simple Lie Algebras
Todo: discuss $B_n, C_n, D_n$ representations.
- [[Clifford Algebra Construction]]
# Integration on Lie Groups
See latex notes on differential geometry for a review of differential forms et al. Remember the representation theory of finite groups, with the characters and stuff? Yeah, let's run it back.
- [[Haar measure for Lie Groups]]
- [[Representations of Compact Lie Groups]]
# All about Real Forms
Up until now, we have worked solely over the field $\CC$. In order to say things about $\RR$, we follow the usual algebraic strategy. First, we'll discuss in full generality of Galois extensions of fields $L$ over $K$; then we'll specialize to real forms.
# Topology of Lie Groups and Homogenous Spaces
Uh oh :) Let's see if my [[Homology Theory]] self-studying is useful at all.
- [[Chevalley-Eilenberg Complex]]