$\require{physics}\newcommand{\cbrt}[1]{\sqrt[3]{#1}}\newcommand{\sgn}{\text{sgn}}\newcommand{\ii}[1]{\textit{#1}}\newcommand{\eps}{\varepsilon}\newcommand{\EE}{\mathbb E}\newcommand{\PP}{\mathbb P}\newcommand{\Var}{\mathrm{Var}}\newcommand{\Cov}{\mathrm{Cov}}\newcommand{\pperp}{\perp\kern-6pt\perp}\newcommand{\LL}{\mathcal{L}}\newcommand{\pa}{\partial}\newcommand{\AAA}{\mathscr{A}}\newcommand{\BBB}{\mathscr{B}}\newcommand{\CCC}{\mathscr{C}}\newcommand{\DDD}{\mathscr{D}}\newcommand{\EEE}{\mathscr{E}}\newcommand{\FFF}{\mathscr{F}}\newcommand{\WFF}{\widetilde{\FFF}}\newcommand{\GGG}{\mathscr{G}}\newcommand{\HHH}{\mathscr{H}}\newcommand{\PPP}{\mathscr{P}}\newcommand{\Ff}{\mathcal{F}}\newcommand{\Gg}{\mathcal{G}}\newcommand{\Hh}{\mathbb{H}}\DeclareMathOperator{\ess}{ess}\newcommand{\CC}{\mathbb C}\newcommand{\FF}{\mathbb F}\newcommand{\NN}{\mathbb N}\newcommand{\QQ}{\mathbb Q}\newcommand{\RR}{\mathbb R}\newcommand{\ZZ}{\mathbb Z}\newcommand{\KK}{\mathbb K}\newcommand{\SSS}{\mathbb S}\newcommand{\II}{\mathbb I}\newcommand{\conj}[1]{\overline{#1}}\DeclareMathOperator{\cis}{cis}\newcommand{\abs}[1]{\left\lvert #1 \right\rvert}\newcommand{\norm}[1]{\left\lVert #1 \right\rVert}\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}\newcommand{\ceil}[1]{\left\lceil #1 \right\rceil}\DeclareMathOperator*{\range}{range}\DeclareMathOperator*{\nul}{null}\DeclareMathOperator*{\Tr}{Tr}\DeclareMathOperator*{\tr}{Tr}\newcommand{\id}{1\!\!1}\newcommand{\Id}{1\!\!1}\newcommand{\der}{\ \mathrm {d}}\newcommand{\Zc}[1]{\ZZ / #1 \ZZ}\newcommand{\Zm}[1]{\left(\ZZ / #1 \ZZ\right)^\times}\DeclareMathOperator{\Hom}{Hom}\DeclareMathOperator{\End}{End}\newcommand{\GL}{\mathbb{GL}}\newcommand{\SL}{\mathbb{SL}}\newcommand{\SO}{\mathbb{SO}}\newcommand{\OO}{\mathbb{O}}\newcommand{\SU}{\mathbb{SU}}\newcommand{\U}{\mathbb{U}}\newcommand{\Spin}{\mathrm{Spin}}\newcommand{\Cl}{\mathrm{Cl}}\newcommand{\gr}{\mathrm{gr}}\newcommand{\gl}{\mathfrak{gl}}\newcommand{\sl}{\mathfrak{sl}}\newcommand{\so}{\mathfrak{so}}\newcommand{\su}{\mathfrak{su}}\newcommand{\sp}{\mathfrak{sp}}\newcommand{\uu}{\mathfrak{u}}\newcommand{\fg}{\mathfrak{g}}\newcommand{\hh}{\mathfrak{h}}\DeclareMathOperator{\Ad}{Ad}\DeclareMathOperator{\ad}{ad}\DeclareMathOperator{\Rad}{Rad}\DeclareMathOperator{\im}{im}\renewcommand{\BB}{\mathcal{B}}\newcommand{\HH}{\mathcal{H}}\DeclareMathOperator{\Lie}{Lie}\DeclareMathOperator{\Mat}{Mat}\DeclareMathOperator{\span}{span}\DeclareMathOperator{\proj}{proj}$
Let $F:X\to Y$ be a regular map. Now that we have [[Differential|differentials]] which are linear maps $dF_P: T_PX\to T_{F(P)} Y$, we can talk about basic properties of linear maps.
>[!definition] Submersion and Immersion
> - If $dF$ is surjective for all $P\in X$, then we call $F$ a ==**submersion**==. Intuitively, $F$ locally fills $Y$.
> - If $dF$ is injective for all $P\in X$, then we call $F$ an [[Immersion]].
> [!example] Stupid Examples
> Let $m < n$ be positive integers. Consider:
> $i(x_1,\dots x_m)\to (x_1,\dots, x_m, 0,\dots, 0),\qquad s(x_1,\dots, x_n)\to (x_1,\dots x_m)$
>
> Then $i$ is an immersion while $s$ is a submersion. This is basically all that can happen, locally.
>[!problem] Implicit Function Theorem
> If $F$ is a submersion then for any $Q\in Y$, $F^{-1}(Q)$ is a manifold of dimension $\dim X - \dim Y$.
>[!solution]
>This is a local question. For any $P\in F^{-1}(Q)$, we wish to exhibit a local homeomorphism to $\RR^{n-m}$. Looking at local charts $\phi: U\to \RR^n$. and $\psi: V\to \RR^m$ with $P\in U$ and $Q\in V$, we observe that $\psi \circ F\circ \phi^{-1}$ is also a submersion.
>
Thus, we must show $\phi\circ F^{-1} Q$ is locally homeomorphic to $\RR^{n-m}$ inside $\RR^n$. This is just the [[Basic Manifold Exercises#^1292a3|Implicit Function Theorem]].