# Universal Transform Definition
The formal mathematical definition of transformations between different dimensional spaces that preserve information coherence through operations on prime coordinates.
## Definition
For a signal `S` with universal number representation `φ(S)`, the universal transform `T` between dimensional spaces `D₁` and `D₂` preserves the prime coordinate structure:
`T: φₐ(S) → φᵦ(S)`
Where `φₐ` represents the coordinate mapping in dimension `D₁` and `φᵦ` represents the mapping in dimension `D₂`.
The transform satisfies the coherence preservation property:
`‖φₐ(S)‖ₑ = ‖φᵦ(S)‖ₑ`
Where `‖·‖ₑ` is the essential norm measuring the information content.
For continuous transformations between parameter spaces, we can define:
`T_θ: φ(S) → φ_θ(S)`
Where `θ` represents a continuous parameter controlling the transformation.
This continuous transformation satisfies:
`∂/∂θ ‖φ_θ(S)‖ₑ = 0`
Ensuring that the essential information content remains invariant along the transformation path.
## Mathematical Formulation
$
\text{For a signal } S \text{ with universal number representation } \phi(S)\text{, the universal}
$
$
\text{transform } T \text{ between dimensional spaces } D_1 \text{ and } D_2 \text{ preserves}
$
$
\text{the prime coordinate structure:}
$
$
T: \phi_a(S) \to \phi_b(S)
$
$
\text{Where } \phi_a \text{ represents the coordinate mapping in dimension } D_1 \text{ and}
$
$
\phi_b \text{ represents the mapping in dimension } D_2\text{.}
$
$
\text{The transform satisfies the coherence preservation property:}
$
$
\|\phi_a(S)\|_e = \|\phi_b(S)\|_e
$
$
\text{Where } \|\cdot\|_e \text{ is the essential norm measuring the information content.}
$
$
\text{For continuous transformations between parameter spaces, we can define:}
$
$
T_\theta: \phi(S) \to \phi_\theta(S)
$
$
\text{Where } \theta \text{ represents a continuous parameter controlling the transformation.}
$
$
\text{This continuous transformation satisfies:}
$
$
\frac{\partial}{\partial\theta} \|\phi_\theta(S)\|_e = 0
$
$
\text{Ensuring that the essential information content remains invariant along}
$
$
\text{the transformation path.}
$
## Related Concepts
- [[uor-c-091|transform-properties]]
- [[uor-c-092|transform-mechanics]]
- [[uor-c-005|coherence-norm]]
## Metadata
- **ID:** urn:uor:concept:universal-transform-definition
- **Code:** UOR-C-090