# Combinatorial Monoid Extension The extension of UOR principles to combinatorial monoids and incidence algebras, where connected components serve as prime elements. ## Definition Key examples include: - Combinatorial Monoids: In incidence algebras, connected components decompose uniquely, with φ capturing component counts. ## Mathematical Formulation $ \text{For incidence algebras over a poset } P, $ $ \text{connected components } C_i \text{ decompose uniquely} $ $ \phi_{Inc(P)}(f) = (v_{C_1}(f), v_{C_2}(f), \ldots, v_{C_n}(f)) $ $ \text{where } v_{C_i}(f) \text{ captures the count of component } C_i \text{ in } f $ ## Related Concepts - [[uor-c-031|general-uor-existence]] - [[uor-c-002|prime-decomposition]] ## Metadata - **ID:** urn:uor:concept:combinatorial-monoid-extension - **Code:** UOR-C-033