## Introduction
This is the background for self-directed learning I'm doing in Mathematics, as well as sharpening my skills in programming and computer science.
## Mathematics
### Basis
This framework was inspired by several YouTube videos:
1. [How to self-study pure maths](https://youtu.be/byNaO_zn2fI) by Aleph 0
2. [Arongil math self-study playlist](https://youtube.com/playlist?list=PLapqQU8bF_-8waAcQcTLf0ypp0511qWjX&si=yV-kgE_sXYnUbvyb)
3. [My course recommendations for studying mathematics](https://www.youtube.com/watch?v=nUELlHrJMyM) by "Struggling Grad Student"
Additional resources have been included to fill gaps in knowledge and provide a solid foundation.
### Step 1: Basics (DONE)
1. [Algebra Basics](https://www.khanacademy.org/math/algebra-basics) on Khan Academy
2. Introductory Trigonometry
3. Lang, S. (2012). *Basic Mathematics*. Springer.
4. [Precalculus](https://www.khanacademy.org/math/precalculus) on Khan Academy
### Step 2: Foundational Mathematics
#### Stats and Probability (Intro)
1. [Stats and Probability](https://www.coursera.org/learn/machine-learning-probability-and-statistics) section of the DeepLearning.AI Mathematics for ML specialization
2. Khan Academy probability and statistics courses
3. [3Blue1Brown Probabilities](https://youtube.com/playlist?list=PLZHQObOWTQDOjmo3Y6ADm0ScWAlEXf-fp)
4. [3Blue1Brown Central Limit Theorem](https://youtube.com/playlist?list=PLZHQObOWTQDOMxJDswBaLu8xBMKxSTvg8)
5. [LibreText Stats Library](https://stats.libretexts.org/)
#### Linear Algebra (Intro)
1. [Linear Algebra for Machine Learning and Data Science](https://www.coursera.org/learn/machine-learning-linear-algebra) section of the DeepLearning.AI Math for ML specialization
2. [Linear Algebra](https://www.khanacademy.org/math/linear-algebra) on Khan Academy
3. [Essence of Linear Algebra](https://youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
4. [Linear Algebra for Programmers](https://coffeemug.github.io/spakhm.com/posts/01-lingalg-p1/linalg-p1.html)
#### Calculus
1. [Calculus](https://www.coursera.org/learn/machine-learning-calculus) section of the DeepLearning.AI Math for ML specialization
2. [Essence of Calculus](https://youtube.com/playlist?list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr)
3. Stewart, J. (2020). *Calculus*. Cengage Learning.
- [Accompanying playlist](https://www.youtube.com/watch?v=RpEmexWu_9o&list=PL4MvRz3GM4bjey2id6ougaoxP2RyoOe_V)
4. Khan Academy Calculus sequence:
- [Calculus 1](https://www.khanacademy.org/math/calculus-1)
- [Differential Calculus](https://www.khanacademy.org/math/differential-calculus)
- [Integral Calculus](https://www.khanacademy.org/math/integral-calculus)
- [Multivariable Calculus](https://www.khanacademy.org/math/multivariable-calculus)
#### Other Topics
1. [College Algebra](https://www.khanacademy.org/math/college-algebra) on Khan Academy
2. Intro to number theory
3. Intro to proofs
4. Complex numbers
5. Additional resources:
- [Workbooks video](https://www.youtube.com/watch?v=vuvcOXH4Z5Q)
- McMullen, C. (2012). *Trigonometry Essentials Practice Workbook with Answers*. CreateSpace Independent Publishing Platform.
- [Paul's Online Math Notes](https://tutorial.math.lamar.edu/)
### Step 3: Differential Equations, Mechanics, and Modeling
#### Differential Equations
1. [MIT 18.03: Differential Equations](https://ocw.mit.edu/courses/18-03-differential-equations-spring-2010/)
- [playlist](https://www.youtube.com/watch?v=76WdBlGpxVw&list=PL64BDFBDA2AF24F7E)
2. Edwards, C., & Penney, D. (2003). *Elementary Differential Equations with Boundary Value Problems*. Prentice Hall. This book is extraordinarily overpriced for what is a book of average value. Buy it if you need to for a course or if you can get it second hand. There is a Dover book and some books from India that are like 1/5 of the cost or something and are just as good or better.
3. Other resources:
- [3Blue1Brown Differential Equations](https://youtube.com/playlist?list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6) - good for intuition but won't actually teach you how to solve ODEs
- [Professor Leonard playlist](https://www.youtube.com/playlist?list=PLDesaqWTN6ESPaHy2QUKVaXNZuQNxkYQ_) - good if you want to go slow with lots of explanation but enough repetition for me to find it infuriating at times
- [Trefor Bazett playlist](https://www.youtube.com/watch?v=B5IjsTONKkw&list=PLHXZ9OQGMqxde-SlgmWlCmNHroIWtujBw) - Medium pace
- [Steve Brunton engineering math playlist](https://youtube.com/playlist?list=PLMrJAkhIeNNTYaOnVI3QpH7jgULnAmvPA&si=RksW4jqergBN6fav) - exceptionally clear and covers a lot of useful material and includes a lot of modelling in both python and matlab
- [Michael Penn playlist](https://www.youtube.com/watch?v=30CVhA6FV_I&list=PL22w63XsKjqxWUzDlkrbtifIx-XbKYnge) - ok great. That's a good place to stop.
- [Khan Academy Differential Equations](https://www.khanacademy.org/math/differential-equations)
- McMullen, C. (2022) *Differential Equations. Essential Skills Practice Workbook with Answers.* Zishka Publishing.
#### Mechanics
1. [MIT 8.012: Classical Mechanics](https://ocw.mit.edu/courses/8-012-physics-i-classical-mechanics-fall-2008/)
- [playlist](https://www.youtube.com/watch?v=F3N5EkMX_ks&list=PLUl4u3cNGP61qDex7XslwNJ-xxxEFzMNV)
2. Kleppner, D., & Kolenkow, R. (1973). *An Introduction to Mechanics*. McGraw-Hill.
#### Modeling
1. [Maxima by Example](https://home.csulb.edu/~woollett/mbe.html)
2. Torrence, B., & Torrence, E. (2019). *A Student's Introduction to Mathematica and the Wolfram Language*. Cambridge University Press.
#### Multivariable Calculus and Vector Calculus
1. Stewart, J. *Calculus*
2. Additional Resources
1. Michael Penn playlists
1. [vector-valued functions](https://www.youtube.com/watch?v=ML7v1HvBxiM&list=PL22w63XsKjqxHk45H_ZDYVUY4XeZv7ZtK&pp=iAQB)
2. [multiple integrals](https://www.youtube.com/watch?v=YHtzHVOIypE&list=PL22w63XsKjqz033oE59Vwc1lOIg_detQj&pp=iAQB)
3. [multivariable functions](https://www.youtube.com/watch?v=1OtTUdo5_4Q&list=PL22w63XsKjqyurOw5_v_xFu7XHNtmh7x1&pp=iAQB)
4. [vectors for multivariable calculus](https://www.youtube.com/watch?v=93vCDrPj_QE&list=PL22w63XsKjqyC3bWVd5EjGEVN9pqq55yF)
5. [multivariable calculus](https://www.youtube.com/watch?v=93vCDrPj_QE&list=PL22w63XsKjqz4R-2yzZDbxRuioaOjGml3&pp=iAQB)
### Step 4: Pure Mathematics
#### Advanced Calculus/Analysis
1. Spivak, M. (2008). *Calculus*. Publish or Perish.
- [Study program](http://alpha.math.uga.edu/%7Epete/MATH2400F11.html)
2. [The Matrix Calculus You Need for Deep Learning](https://explained.ai/matrix-calculus/)
3. Alcock, L. (2017). *How to Think About Analysis*. Oxford University Press.
4. Cummings, J. (2023). *Real Analysis: A Long-Form Mathematics Textbook*. LongFormMath.
5. Abbott, S. (2015). *Understanding Analysis*. Springer and this set of [lectures by Francis Su](https://www.youtube.com/playlist?list=PL0E754696F72137EC)
6. [MIT 18.100a: Real Analysis](https://ocw.mit.edu/courses/18-100a-real-analysis-fall-2020/pages/syllabus/) [playlist](https://www.youtube.com/playlist?list=PLUl4u3cNGP61O7HkcF7UImpM0cR_L2gSw)
7. Lebl, J. (2021). *Basic Analysis: Introduction to Real Analysis*. CreateSpace Independent Publishing Platform.
8. Additional resources
1. Michael Penn real analysis [playlist](https://www.youtube.com/watch?v=L-XLcmHwoh0&list=PL22w63XsKjqxqaF-Q7MSyeSG1W1_xaQoS&pp=iAQB)
#### Linear Algebra
1. Treil, S. (2017). *Linear Algebra Done Wrong*. [Online Book](https://www.math.brown.edu/streil/papers/LADW/LADW.html)
2. [MIT 18.06SC: Linear Algebra](https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/)
3. Axler, S. (2015). *Linear Algebra Done Right*. Springer.
4. [MIT 18.700: Linear Algebra](https://ocw.mit.edu/courses/18-700-linear-algebra-fall-2013/)
#### Abstract Algebra
1. Intro
1. Pinter, C. C. (2010). *A Book of Abstract Algebra*, Dover Books.
2. . [MIT 18.703: Modern Algebra](https://ocw.mit.edu/courses/18-703-modern-algebra-spring-2013/) Group theory Lecture
[playlist](https://www.youtube.com/playlist?list=PLelIK3uylPMGzHBuR3hLMHrYfMqWWsmx5) by Benedict Gross (not actually for the MIT course but similar syllabus, following a Michael Artin Algebra book)
3. Fraleigh
4. Hien, Marco
5. Reference:
1. Lang, S. *Algebra*, Springer.
2. Herstein, I. N. *Topics in Algebra*
3. Dummit, D. S., Foote, R. M. *Abstract Algebra*
6. Additional resources:
1. Arongil Self-study [advice](https://www.youtube.com/watch?v=2ihiR8hJlMs&list=PLapqQU8bF_-8waAcQcTLf0ypp0511qWjX&index=5&t=153s) for Abstract Algebra
2. Michael Penn [playlist](https://www.youtube.com/watch?v=m4yYeTGe-ic&list=PL22w63XsKjqwN7sHsEiy0yqkcjQfXAuVb&pp=iAQB) on the basics of groups and [this one](https://www.youtube.com/watch?v=nKxl9Qtfjsk&list=PL22w63XsKjqw3ZFydd_LqOCUBtWYg5svI&pp=iAQB) on group theory exercises
2. Socratica [playlist](https://www.youtube.com/playlist?list=PLi01XoE8jYoi3SgnnGorR_XOW3IcK-TP6)
3. Ben1994 [playlist](https://www.youtube.com/playlist?list=PLAvgI3H-gclb_Xy7eTIXkkKt3KlV6gk9_)
3. Herstein, I. N. (1975). *Topics in Algebra*. John Wiley and Sons.
4. McLarty, C. (2003). _Elementary Categories, Elementary Toposes_. OUP.
5. van der Waerden, B. L. (1930), _Moderne Algebra_ (_Algebra I_ and _Algebra II_ in English editions). Springer
#### Other Topics
1. Cummings, J. (2021). *Proofs: A Long-Form Mathematics Textbook*. LongFormMath.
2. [Feynman Lectures on Physics: Chapter 22](https://www.feynmanlectures.caltech.edu/I_22.html)
3. Halmos, P. *Naive Set Theory*. Springer.
### Step 5: More Advanced Mathematics
#### PDEs
1. [MIT 18.152: Introduction to Partial Differential Equations](https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equations-fall-2011/)
2. Constanda, C. _Solution Techniques for Elementary Partial Differential Equations_. CRC Press
3. Haberman, R. (2012) *Applied Partial Differential Equations with Fourier Series and Boundary Value Problems*. Pearson.
4. Salsa, S., Verzini, G. (2010). *Partial Differential Equations in Action: From Modelling to Theory*. Springer.
5. [Vector Calculus and PDEs playlist](https://www.youtube.com/watch?v=Jt5R-Tm8cV8&list=PLMrJAkhIeNNQromC4WswpU1krLOq5Ro6S)
6. Pivato, M. (2010). *Linear Partial Differential Equations and Fourier Theory*. Cambridge University Press.
7. Evans, L. C. (2010) *Partial Differential Equations*. American Mathematical Society.
8. [Commutant playlist](https://www.youtube.com/playlist?list=PLF6061160B55B0203)
List of book resources by [Mathematical Toolbox](https://www.youtube.com/watch?v=0sIzAZLtfKc) He recommends
1. for problem solving- Wazwaz, A. *Partial Differential Equations and Solitary Waves Theory*. Springer
2. for theory- Pivato above
#### Mathematical Statistics/Inference
1. [Mathematical Statistics playlist](https://www.youtube.com/playlist?list=PLLyj1Zd4UWrPZH-fknPLak0tlUpUISBZR)
2. Wasserman, L. (2004). *All of Statistics: A Concise Course in Statistical Inference*. Springer.
3. Casella, G., & Berger, R. L. (2002). *Statistical Inference*. Duxbury.
4. Murphy, K. P. (2022). *Probabilistic Machine Learning: An Introduction*. MIT Press.
#### Complex Analysis
1. Wegert, E. (2012) *Visual Complex Functions: An Introduction with Phase Portraits*, Springer
2. Stein, E. M., & Shakarchi, R. (2003). *Complex Analysis*. Princeton University Press.
#### Stochastic Calculus and Financial Maths
##### Probability prerequisites
1. Blitzstein, J. K., & Hwang, J. (2019). *Introduction to Probability* (2nd ed.). Chapman & Hall/CRC.
2. Ash, C. (1993). *The Probability Tutoring Book: An Intuitive Course for Engineers and Scientists (and Everyone Else!)*. IEEE Press.
3. Song, I., Park, S. R., & Yoon, S. (2022). *Probability and Random Variables: Theory and Applications*. Springer.
(1 or 2, then 3)
##### Stochastic Differential Equations
1. Calin, O. (2015). *An Informal Introduction to Stochastic Calculus with Applications*. World Scientific.
2. Evans, L. C. (2013). _An Introduction to Stochastic Differential Equations_. American Mathematical Society
3. Klebaner, F. C. (2012). *Introduction to Stochastic Calculus with Applications* (3rd ed.). Imperial College Press.
4. Albin, P., Hamza, K., & Klebaner, F. C. (2024). *Problems and Solutions in Stochastic Calculus with Applications*. World Scientific.
1 or 2, then 3 or 4.
##### Financial Maths
1. Hirsa, A., Neftci, S. (2013). *An Introduction to the Mathematics of Financial Derivatives*. Academic Press
2. Saari, D. (2019). *Mathematics of Finance: An Intuitive Introduction*. Springer
3. Stefanica, D. (2011). *A Primer for the Mathematics of Financial Engineering*. FE Press
4. Shreve, S. E. (2004). *Stochastic Calculus for Finance II: Continuous-Time Models*. Springer.
5. Chin, E., Nel, D., & Ólafsson, S. (2014). *Problems and Solutions in Mathematical Finance: Stochastic Calculus* (Vol. 1). Wiley.
## Other Mathematical Topics (Review once the background is in place)
1. [How to self-study pure maths](https://youtu.be/byNaO_zn2fI)
2. Discrete Maths
1. Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). *Concrete Mathematics: A Foundation for Computer Science*. Addison-Wesley.
2. Lovász, L. (2005). [Discrete Mathematics lecture notes](https://cims.nyu.edu/~regev/teaching/discrete_math_fall_2005/dmbook.pdf)
3. Point Set Topology
1. [MAT327 Course Notes](http://www.math.toronto.edu/ivan/mat3...)
4. Differential Geometry
1. TODO- add some resources
6. Number Theory
1. Maybe Andrews, G. E. (1994) *Number Theory*. Dover.
2. [The Erdős Problems Repository](https://www.erdosproblems.com/)
7. Fractals
1. [Santa Fe Institute MOOC: Fractals and Scaling](https://www.complexityexplorer.org/courses/169-fractals-and-scaling-2023)
2. [Yale Fractal Resources](https://users.math.yale.edu/public_html/People/frame/Fractals/)
## Computer Science/Software Engineering
1. Expanding programming skills
- Python data science and visualization
- Rust (see separate learning resources)
- TypeScript (on hold)
- Practical ML
- Mathematica (for math self-study aid)
2. [The Missing Semester of Your CS Education (MIT)](https://missing.csail.mit.edu/)
3. AI and Machine Learning (separate syllabus to be curated)