## Triangle formulas If two sides of a triangle are $a$ and $b$ and the angle between them is $\theta$, then the area is given by $\text{area} = \frac{1}{2}ab\sin\theta$ ## [[Trig Ratios of Special Triangles]] ### Sides | Angles | Side 1 | Side 2 | Hypotenuse | | -----------------------------------------------------:|:------:|:------------:|:-----------:| | 30:60:90$\textdegree$ | $x$ | $\sqrt{3} x$ | $2x$ | | 45:45:90$\textdegree$ | $x$ | $x$ | $\sqrt{2} x$ | | $\frac{\pi}{6}:\frac{\pi}{3}:\frac{\pi}{2}\text{rad}$ | $x$ | $\sqrt{3} x$ | $2x$ | | $\frac{\pi}{4}:\frac{\pi}{4}:\frac{\pi}{2}\text{rad}$ | $x$ | $x$ | $\sqrt{2}x$ | ### Resulting Special Ratios | Function | 30$\textdegree$ | 60$\textdegree$ | 45$\textdegree$ | $\frac{\pi}{6}\text{rad}$ | $\frac{\pi}{3}\text{rad}$ | $\frac{\pi}{4}\text{rad}$ | | -------- |:--------------------:|:--------------------:|: --------------------:|:-----------------------:|:-----------------------:|:------------------------:| | $\sin$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | | $\cos$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | | $\tan$ | $\frac{\sqrt{3}}{3}$ | $\sqrt{3}$ | $1$ | $\frac{\sqrt{3}}{3}$ | $\sqrt{3}$ | $1$ | ## [[Unit Circle Definitions of Trigonometric Functions#Common angles in degrees and radians|Common angles in degrees and radians]] | angle in $\textdegree$ | angle in radians | | :----------------------: | : ----------------: | | 360$\textdegree$ | $2 \pi \text{ rad}$ | | 180$\textdegree$ | $\pi \text{ rad}$ | | 90$\textdegree$ | $\frac{\pi}{2} \text{ rad}$ | | 60$\textdegree$ | $\frac{\pi}{3} \text{ rad}$ | | 45$\textdegree$ | $\frac{\pi}{4} \text{ rad}$ | | 30$\textdegree$ | $\frac{\pi}{6} \text{ rad}$ | ## Conversions $\pi \text{ rad} = 180 \textdegree$ ## Identities ![](https://youtu.be/m1OitPmkydY?si=1XQi5oLd5XQptXer) ### Negative Angle Identities (a.k.a “even”/“odd” identities) $ \begin{align*} \cos(-\theta) &= \cos \theta & \sin(-\theta) &= -\sin \theta & \tan(- \theta) &= -\tan \theta \\ \sec(-\theta) &= \sec \theta & \csc(-\theta) &= -\csc \theta & \cot(- \theta) &= -\cot \theta \\ \end{align*} $ *Note*: $\cos$ and $\sec$ are the exception here. They are called “even” they are even functions (meaning they are symmetrical about the $y$ axis(ie $f(x)=f(-x)$). The other four are “odd” because the sign flips with the corresponding sign change of $\theta$ (ie $-f(x)=f(-x)$). Another way of thinking about this is using the [[Geometric Construction of Trigonometric Identities from the Unit Circle#ASTC Method|ASTC/CAST method]]. ### [[Sum and Difference Identities]] $ \begin{align*} \sin(\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\[8pt] \cos(\alpha \pm \beta) &= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\[8pt] \tan(\alpha \pm \beta) &= \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \end{align*} $ *Note:* 1. the order of signs( $\pm$ and $\pm$) is the same on the RHS of the sin identity 2. the order of signs( $\pm$ and $\mp$) is reversed on the RHS of the cos identity 3. In the tan identity the signs are the same in the numerator, but reversed in the denominator ### [[Double Angle Identities]] $ \begin{align*} \sin(2 \theta) &= 2 \sin \theta \cos \theta \\[6pt] \cos(2 \theta) &= \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta -1 = 1 - 2 \sin^2 \theta \\[8pt] \tan(2 \theta) &= \frac{2 \tan \theta}{1-\tan^2 \theta} \end{align*} $ ### [[Half Angle Identities]] $ \begin{align*} \sin\left( \frac{\theta}{2}\right) &= \pm \sqrt{\frac{1-\cos \theta}{2}}\\[8pt] \cos\left( \frac{\theta}{2}\right) &= \pm \sqrt{\frac{1+\cos \theta}{2}}\\[8pt] \tan\left( \frac{\theta}{2}\right) &= \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}} \\[8pt] &= \frac{1-\cos \theta}{\sin\theta} \\[8pt] &= \frac{\sin \theta}{1 + \cos \theta} \\[8pt] \end{align*} $ *note:* The second two forms of $\tan(\theta/2)$ can be derived by multiplying the top and bottom of the first form by $1-\cos \theta$ and $1+\cos \theta$ respectively ### [[Pythagorean Trigonometric Identities|Pythagorean Identities]] $ \begin{align*} \sin^2 \theta + \cos^2 \theta &= 1\\ \csc^2 \theta - \cot^2 \theta &= 1 \\ \sec^2 \theta - \tan^2 \theta &= 1 \\ \end{align*} $ ### [[Trigonometric Functions of Complementary Angles|Complementary Angles]] $ \begin{align*} \sin \theta &= \cos(\frac{\pi}{2} - \theta) \\ \cos \theta &= \sin(\frac{\pi}{2} - \theta) \\ \\ \sec \theta &= \csc(\frac{\pi}{2} - \theta) \\ \csc \theta &= \sec(\frac{\pi}{2} - \theta) \\ \\ \tan \theta &= \cot(\frac{\pi}{2} - \theta) \\ \cot \theta &= \tan(\frac{\pi}{2} - \theta) \\ \end{align*} $ ### [[Geometric Construction of Trigonometric Identities from the Unit Circle|Unit Circle Identities]] $ \begin{align*} \cos(\pi - \theta) &= -\cos \theta & \sin(\pi - \theta) &= \sin \theta \\ \cos(\pi + \theta) &= -\cos \theta & \sin(\pi + \theta) &= -\sin \theta \\ \tan(\pi + \theta) &= \tan \theta & \tan(\pi - \theta) &= -\tan \theta \end{align*} $ ### Power-reducing formulas *Note*: These are just another way of stating the [[#Half Angle Identities]]. $ \begin{align*} \sin^2 \theta &= \frac{1-\cos(2\theta)}{2} \\[8pt] \cos^2 \theta &= \frac{1+\cos(2\theta)}{2} \\[8pt] \tan^2 \theta &= \frac{1-\cos(2\theta)}{1+\cos(2\theta)} \\[8pt] \end{align*} $ ### Product sum formulas $ \begin{align*} \sin \alpha \sin \beta &= \frac{\cos(\alpha-\beta) - \cos(\alpha + \beta)}{2} \\[8pt] \cos \alpha \cos \beta &= \frac{\cos(\alpha-\beta) + \cos(\alpha + \beta)}{2} \\[8pt] \sin \alpha \cos \beta &= \frac{\sin(\alpha+\beta) - \sin(\alpha - \beta)}{2} \\[8pt] \cos \alpha \sin \beta &= \frac{\sin(\alpha+\beta) + \sin(\alpha - \beta)}{2} \\[8pt] \end{align*} $ ## Laws ### Law of sines $ \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} $ ### Law of cosines $ c^2 = a^2 + b^2 -2ab \cos \theta $