By utilizing rotation, we can derive further identities, a daunting list of which can be found on [wikipedia](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Reflections,_shifts,_and_periodicity). This is a distillation of two Khan academy videos, one covering [sine and cosine rotations](https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:trig/x9e81a4f98389efdf:trig-id/v/trig-angle-rotations) and the second covering [tan](https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:trig/x9e81a4f98389efdf:trig-id/v/tan-periodicity).
The identities we will derive are:
$
\begin{align*}
\cos \left( \frac{\pi}{2} + \theta \right) &= -\sin \theta &
\quad \sin \left( \frac{\pi}{2} + \theta \right) &= \cos \theta &
\tan \left( \frac{\pi}{2} + \theta \right) &= -\cot \theta \tag{1}\\[12pt]
\cos \left( \frac{3\pi}{2} - \theta \right) &= -\sin \theta &
\quad \sin \left( \frac{3\pi}{2} - \theta \right) &= -\cos \theta &
\tan \left( \frac{3\pi}{2} - \theta \right) &= \cot \theta \tag{2}\\[12pt]
\cos \left( \frac{3\pi}{2} + \theta \right) &= \sin \theta &
\quad \sin \left( \frac{3\pi}{2} + \theta \right) &= -\cos \theta &
\tan \left( \frac{3\pi}{2} + \theta \right) &= -\cot \theta \tag{3}\\
\end{align*}
$
All angles are in [[radians]], but could be converted to use degrees in the obvious way.
## Rotation by $\frac{\pi}{2}$
Going back to our original [[Geometric Construction of Trigonometric Identities from the Unit Circle|unit circle]] with a single ray to $B$ creating the angle $\theta$, consider we construct an additional ray to point $C$ on the circumference such that $\angle BAC$ is a right angle (ie $\angle BAC = \frac{\pi}{2}$ in radians. What are the coordinates of $C$?
![[Unit Circle with Ray Rotation.png]]
Call the point $(0,1)$ $I$. Consider $\angle CAI$. It is clear by rotation of $\angle BAH$ that this angle is $\theta$.
Construct point $D$ such that $\angle IAD = \theta$.
![[Unit Circle with Ray Rotation 2.png]]
$
\begin{align*}
D &=\left(\cos\left(\frac{\pi}{2}-\theta\right), \sin\left(\frac{\pi}{2}-\theta\right)\right) & \text{...by construction} \\
\text{but } &\begin{cases}
\cos(\frac{\pi}{2}-\theta) = \sin \theta \\
\sin(\frac{\pi}{2}-\theta) = \cos \theta \\
\end{cases} & \text{...complementary angles} \\[8pt]
\text{so } D &= \left( \sin \theta, \cos \theta \right).
\\[8pt]
AC &\cong AI \cong AD = 1 \\
\angle CAI &\cong \angle IAD = \theta \\
\text{so } \Delta CAI &\cong \Delta IAD \\
\end{align*} \\
$
Therefore we can see that $\Delta CAI$ is simply a reflection of $\Delta IAD$ about the y-axis, and the coordinates of $C$ must be $(-\sin \theta, \cos \theta)$.
Now considering $\angle CAH$, we notice $\angle CAH = \angle CAB + \angle BAH = \frac{\pi}{2} + \theta$
Therefore
$
\begin{cases}
\cos \left( \frac{\pi}{2} + \theta \right) = -\sin \theta \\
\sin \left( \frac{\pi}{2} + \theta \right) = \cos \theta \\
\tan \left( \frac{\pi}{2} + \theta \right) = -\cot \theta \\
\end{cases} \tag{1}
$
## Rotation by $\pi$
Note that rotation by $\pi$ is simply the reflection of $\angle BAH$ [[Geometric Construction of Trigonometric Identities from the Unit Circle#Reflection about both axes|about both axes]] which we have already covered.
## Rotation by $\frac{3\pi}{2}$
Continuing $AC$ to intersect the circle at $E$, $AI$ to $J$, and $AD$ to $F$ we can construct two further sets of related rotational identities.
![[Unit Circle with Ray Rotation 3.png]]
$
\begin{align*}
\angle FAJ &\cong \angle IAD = \theta & \text{...opposite angles} \\
\angle FAH &= \angle JAB - \angle FAJ & \left( \angle JAB > \frac{\pi}{2} \right)\\
&= \frac{3\pi}{2} - \theta \\[8pt]
\text{so } F &= \left( \cos \left( \frac{3\pi}{2} - \theta \right), \sin \left( \frac{3\pi}{2} - \theta \right) \right) & \text{...unit circle definition} \\
\text{but } F &= \left( -\sin \theta, -\cos \theta \right) & \text{...by symmetry with D} \\[10pt]
\text{Therefore } \begin{cases}
\cos \left( \frac{3\pi}{2} - \theta \right) = -\sin \theta \\
\sin \left( \frac{3\pi}{2} - \theta \right) = -\cos \theta \\
\tan \left( \frac{3\pi}{2} - \theta \right) = \cot \theta \\
\end{cases} \tag{2}
\end{align*}
$
...and similarly
$
\begin{align*}
\angle JAE &\cong \angle CAI = \theta & \text{...opposite angles}\\
\angle EAH &= 3\pi + \theta \\[8pt]
\text{so } E &= \left( \cos \left( \frac{3\pi}{2} + \theta \right), \sin \left( \frac{3\pi}{2} + \theta \right) \right) & \text{...unit circle definition} \\
\text{but } E &= \left( \sin \theta, -\cos \theta \right) & \text{...by symmetry with D}\\[10pt]
\text{Therefore }\begin{cases}
\cos \left( \frac{3\pi}{2} + \theta \right) = \sin \theta \\
\sin \left( \frac{3\pi}{2} + \theta \right) = -\cos \theta \\
\tan \left( \frac{3\pi}{2} + \theta \right) = -\cot \theta \\
\end{cases} \tag{3}
\end{align*}
$
Geogebra diagrams here: [1](https://www.geogebra.org/calculator/mwxzpvmu)[2](https://www.geogebra.org/calculator/zzrej4z4)[3](https://www.geogebra.org/calculator/wyp8bjzr)