## Summary
### Sides
| Angles (degrees) | Angles (radians) | Side 1 | Side 2 | Hypotenuse |
| -------- | ------ | ------ | ---------- | - |
| 30:60:90$\textdegree$ | $\frac{\pi}{6}:\frac{\pi}{3}:\frac{\pi}{2}$ | $x$ | $x \sqrt{3}$ | $2x$ |
| 45:45:90$\textdegree$ | $\frac{\pi}{4}:\frac{\pi}{4}:\frac{\pi}{2}$ | $x$ | $x$ | $x\sqrt{2}$ |
### Resulting Special Ratios
| Function | 30$\textdegree$/$\frac{\pi}{6}$ radians | 45$\textdegree$/$\frac{\pi}{4}$ radians | 60$\textdegree$/$\frac{\pi}{3}$ radians |
| -------- |: -- :|: --- :|: --- :|
| $\sin$ | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ |
| $\cos$ | $\frac{\sqrt{3}}{2}$ |$\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ |
| $\tan$ | $\frac{\sqrt{3}}{3}$ | $1$ | $\sqrt{3}$ |
### Hand rule
There is a mnemonic trick called the "hand rule" for memorizing these, explained [here](https://www.youtube.com/watch?v=jI81WXyFrL0). If you take the angles in order $0\textdegree, 30\textdegree, 45\textdegree, 60\textdegree$ and $90\textdegree$ and assign each to a finger starting with your thumb, then:
- $\sin$ of that angle is the square root of number of fingers on the "thumb-side" of the finger corresponding with the angle divided by two
- $\cos$ is the same, except using the number of fingers on the "pinky-side" instead
##### Worked example of the hand rule
Say we want the $\sin 60\textdegree$ and $\cos 60\textdegree$. $60\textdegree$ corresponds with our ring finger and numbering from our thumb, we have 3 fingers on the same side as the thumb and 1 on the other side. So
$
\begin{align*}
\sin 60\textdegree &= \frac{\sqrt{3}}{2} \\
\cos 60\textdegree &= \frac{\sqrt{1}}{2} = \frac{1}{2}\\
\end{align*}
$
### Special triangles in radians
| Degrees | Radians |
| ------- | ------- |
| 30:60:90$\textdegree$ | $\frac{\pi}{6}:\frac{\pi}{3}:\frac{\pi}{2}$ |
| 45:45:90$\textdegree$ | $\frac{\pi}{4}:\frac{\pi}{4}:\frac{\pi}{2}$ |
## Derivation: 30-60-90/$\frac{\pi}{6}$-$\frac{\pi}{3}$-$\frac{\pi}{2}$triangle
Consider an equilateral triangle with sides $a$,$b$ and $c$: We drop an altitude from $C$ and call this length $x$
![[Equilateral Triangle 2.png]]
Now we know that $a=b=c$. For the purposes of this construction, let this length be $2$. It's easy to see that $c$ is bisected by our altitude given that the two outer triangles are clearly congruent having a common side, an equal side and 3 equal angles. Therefore their base must also be equal. So the length of this bottom/shortest side of each of the two triangles is $\frac{c}{2}=1$.
But what is the length of $x$? Well, by Pythagoras:
$
\begin{align*}
x &= \sqrt{b^2-c^2}\\
&=\sqrt{2^2 - 1^2} \\
&= \sqrt{3}
\end{align*}
$
So the sides of this triangle are $1$, $2$ and $\sqrt{3}$. Having derived this result, let us remove the half of the triangle on the right and relabel everything to make things clearer.
![[Equilateral Triangle 3.png]]
If we consider these angle sizes in degrees, we have
$
\begin{cases}
\angle A = 60 \textdegree ~ \text{(angles of an equilateral triangle)}\\
\angle B = 90 \textdegree ~ \text{(by construction)}\\
\angle C = 180 \textdegree - 90 \textdegree - 60 \textdegree = 30 \textdegree \\
\end{cases}
$
In [[Radians]] this is
$
\begin{cases}
\angle A = \frac{\pi}{3}\\
\angle B = \frac{\pi}{2}\\
\angle C = \pi - \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} \\
\end{cases}
$
Having all the sides and angles, it is simple to derive the trig ratios of this triangle. We will do it in both degrees and radians.
$
\begin{align*}
\sin 30\degree &= \frac{1}{2} &
\sin \frac{\pi}{6} &= \frac{1}{2} \\
\cos 30\degree &= \frac{\sqrt{3}}{2} &
\cos \frac{\pi}{6} &= \frac{\sqrt{3}}{2} \\
\tan 30\degree &= \frac{\sqrt{3}}{3} &
\tan \frac{\pi}{6} &= \frac{\sqrt{3}}{3} \\
\sin 60\degree &= \frac{\sqrt{3}}{2} &
\sin \frac{\pi}{3} &= \frac{\sqrt{3}}{2} \\
\cos 60\degree &= \frac{1}{2} &
\cos \frac{\pi}{3} &= \frac{1}{2} \\
\tan 60\degree &= \sqrt{3} &
\tan \frac{\pi}{3} &= \sqrt{3} &
\end{align*}
$
## Derivation: Isosceles right triangle (45-45-90/$\frac{\pi}{4}-\frac{\pi}{4}-\frac{\pi}{2}$ triangle)
Consider $\Delta ABC$ with the following properties:
$
\begin{cases}
m \angle CAB = 45 \textdegree = \frac{\pi}{4}\\
m \angle ACB = 90 \textdegree = \frac{\pi}{2}\\
m \angle ABC = 45 \textdegree = \frac{\pi}{4}\\
\end{cases}
$
![[45-45-90 Triangle.png]]
We can see that $AC \cong BC$ because it is an isosceles triangle, but what is $AB$?
Let $AC = BC = x$. Then
$
\begin{align*}
AB^2 &= AC^2 + CB^2 \; \text{...from Pythagoras} \\
&= 2x^2 \\
\therefore AB &= x\sqrt{2}
\\
\\
\begin{cases}
AB &= x\sqrt{2} \\
AC &= x \\
BC &= x \\
\end{cases} \\
\end{align*}
$
![[45-45-90 Triangle with labels.png]]
From this we can deduce the following ratios:
$
\begin{align*}
\sin 45 \degree = \cos 45 \degree &= \frac{x}{x\sqrt{2}} &
\sin \frac{\pi}{4} = \cos \frac{\pi}{4} &= \frac{x}{x\sqrt{2}} \\
&= \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2} &
&= \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}\\
\tan 45 \degree &= \frac{x}{x} &
\tan \frac{\pi}{4} &= \frac{x}{x} \\
&= 1 & &= 1 \\
\end{align*}
$
Diagrams available on geogebra [1](https://www.geogebra.org/geometry/zad6y4ke) [2](https://www.geogebra.org/calculator/rqpsxnkk) [3](https://www.geogebra.org/geometry/usph9zuz) [4](https://www.geogebra.org/geometry/tschmfhu)