# Akaike Information Criterion
- Considers goodness-of-fit to the data and penalizes complexity of the model
- $AIC=−2log(L)+2q$
- where:
- L: likelihood function for a particular model
- q: number of variables of this model
- If error terms $\epsilon$ follows [[Normal Distribution]] , expected value 0 + constant variance $AIC = \frac{1}{\eta \sigma^{2}}(RSS + 2p \hat \sigma^2)$