# AutoEncoder
- ![[Pasted image 20220310204652.webp]]
- Regression by predicting a reconstruction of the data
- Encoder $E : \mathscr{X} \rightarrow \mathscr{F}$
- Decoder $\mathscr{F} \rightarrow \mathscr{D}$
- $E_\theta, D_\theta = argmin_{E_\theta, D\theta}||X-D(E(X))||^2$
- Learn using [[Gradient Descent]]
- Compressed rep of data -> Good for Classification or Regression
- [[MSE]] : Unsupervised
## Difficulties
- dim $\mathscr{F} \lt \mathscr{X}$
- Cannot learn the identity function
- usages
- data compression / [[Dimensionality Reduction]]
- encoder to obtain features (use the latent variable as feature)
- denoising autoencoders
- input noisy image and try to obtain image without noise
- sparse auto-encoder
- contractive autoencoder
## Types
- [[Denoising Autoencoder]]
- [[VAE]]