# Introspection
## Notes
Introspection is the practice of (Jump:: [[Self-awareness]]). As (Jump:: [[Socrates (philosopher)|Socrates]]) said, the unexamined life is not worth living. By introspecting, we gain self knowledge about our emotions and their causes, our tendencies, our preferences and beliefs. Those things might sound arbitrary but nowadays due to the constant (Opposes:: [[Procrastination|Distractions]]) from the external world, our knowledge about ourselves is either limited or non existent.
Introspection is not easy. we might be too tempted to trust first answer we find. (Jump:: [[Conformation Bias]]) and (Jump:: [[Availability Bias]]) can cause us to come up with false answers, which represents what we want to hear, and not what we need to. For example, if we ask ourselves why we are feeling angry, the first answers would probably be an accusation of someone else, rather than admitting our flaws.
How then do we find the answers? It changes from one person to the next, but some common themes are:
1. **Solitude** - Seek (Supported:: [[solitude]]), a place where we can be completely open with ourselves without any external (Opposes:: [[Judgment]]) or interruptions.
2. **Be kind** - Asking ourselves the tough questions is hard enough as it is. Ironically, some of us default to blaming themselves, picturing themselves as worthless. In effect, they become their own (Opposes:: [[Self Criticism|worst critic]]) and assume the answer instead of seeking the truth. Only healthy (Supported:: [[self talk]]) can help us reach the truth.
3. **Remember we are multitude** - It is reasonable to find multiple answers for the same question. It is not a sign that we are crazy or that we don't know ourselves, rather we acknowledge our complexly, that we (Related:: [[A person is a community|we contain multitude]]). We can have good qualities and bad ones, we are both wonderful and terrible at times, and that's okay.
## Visual
![[introspection.webp]]
## Connections
```dataviewjs
const queryPath = "Extras/Queries/connections_query.js"
const queryContent = await dv.io.load(queryPath)
dv.executeJs(queryContent);
```
## Overview
🔼Topic:: [[behavioral psychology (MOC)]]
◀Origin:: [[Anne-Laure Le Cunff]]
🔗Link:: https://nesslabs.com/introspection-trap
%%
# Excalidraw Data
## Text Elements
Introspection ^yQMVBEUa
Look for the answers within ^W8ZA5lPC
## Drawing
```compressed-json
N4KAkARALgngDgUwgLgAQQQDwMYEMA2AlgCYBOuA7hADTgQBuCpAzoQPYB2KqATLZMzYBXUtiRoIACyhQ4zZAHoFAc0JRJQgEYA6bGwC2CgF7N6hbEcK4OCtptbErHALRY8RMpWdx8Q1TdIEfARcZgRmBShcZQUebQBWbQAGGjoghH0EDihmbgBtcDBQMBLoeHF0KCwoVJLIRhZ2LjQAdgAWflKG1k4AOU4xbgA2JIBmAA548dGATnjOyEIOYixu
CFwUhYhCZgARdKribgAzAjCtkjWYAEUAWQA1ACEAUQBVXFrS48J8fABlWDBNaSXDYDSBT4CKCkNgAawQAHUSOpuABGLbMaFwhAAmBAiSCDyQiAwvySDjhXJodGFSBsOCgtQwNFJJJbazKfGoNm0iCYbjOVGjRIzUUzIYzNrjHhtHio8bjLbMtCC8ZDbRtFqzIaTJJTeIzCYYrHwgDCbHwbFIawAxKz7ZteZpQbDlKTlubLdaJNDrMwGYFssSKMjJ
NwZTNtLN4lM2qikkM2m14qMtpIEIRlNJuFKo6N8zxpZqki0xhiEAgjmh4i0ZXKWjMWls3cI4ABJYhU1B5AC6W2O5EyHe4HCEvy27uIFOYXdH46dwmWz2CmWyXd7WyEcGIuEOaJa8p4Ep4R4mHV5RA4sJHY/wW0t2HhVdQp3w515x04UD+hCMFQm2hDEBQE8AaLRDPEQwyv2X4AGK4PoPzKqgNJ1NA1RrG22Qwv6CDYFATTEuQFAACoYRIWFYrh+G
EVsVSYFAACCRDKM06DBMcNRbA0BHuMxmZsdA9LEno2S4EsTDDmgc53ryVqZksBBkQxmHYWw1EEZwxK4EIUBsAASuEv4VNCQgIPeEkABIZlmNTUtooGFAAvp0xSlLAiBrJeSDcUwPRsaiKa+Y0fQDBU8YpmMJZxhcyyrBIuCosSOz7MEe5oK+75oZcEhCLsGhDAA4r0sHHB2jHKPpzyPJgMykBwlnEt8vy4lyUiguCPm8piMLwkixAotSxq9TigIV
BAhKXBOwhZtOXaoaU9KMrALI8mhHJcmtpT8iqQqRvm+ZtMKeqTIaiq8shQpxKdowtPM3UmggnpWraDqssSzqPi2QgehaL0+uQHD+rggZcbyIYDWGaDjIBwHjKWqKoge8P3Wh6aZtmrSonm+aojwMwKoWeOo6UYSVmieNJPK8RJKKzaku2nb5LSkCon8JHEC0AAKAAaAAyjy3L0AD6nGwcwSQIiwKS0n2H6DggUmoDJ00/VOlLcG57nlOGtIuQuav
LhkWQ5PkctoVuO7pShyNHjMJ5DGeFlXje85oQ+T4nGc5kPSDUCPEsjgcMoruyWhWTEAHyxLCH0m3veoRQOa+iITIlZc2wSx2cr8e+6QTGkDCFDprgz4q7yEeMYXbDFyEZe52hcCZ2uzN1GABRt2AW11EkLPm3UHdt84MPATqCNI/Kd0LCUB446MeME9K4zE33svOa5vIeeN3nEt0hHUkMTa8nvoUcIMaA8HqiajLKdO8oH8XoLgPDJXsBzkxl3sX
M+EB3HzxBGEsmwAAWhwW4mBTRcxmM8IwkgEQ8FwCRJqPx/hjWBB1EQXU0I9WxP1QaKFhrYlauNSaRxVazQ1kNOSDJsBMlWuyYOm0tg7VQIKACDpRh6iRjWZefALponngkI8YxURtElKIhMfDsGPWet6dAdo3ofRdN9X6Xo1i+iBgGE2wZQw5nVKPeGVMJ4ozTDZTGqBazJHtJw+I3CWi8PLB/FCN8ZSzDEamXk31GbrhZhANmHNub80FiLMWEspY
SwgLLfsCslblzQpOOamtfFb11nUfWaFNCLmIEbVcps0Abl5JbXcTjjF2wdk7C8SxrxxzdqUD2TjMo+2kX7KOQdY451qZACOrSY6hwTpiZOqdDgZyzn0vOBci4l3rp0jAywq6TLrmMxuzc8ndhZoPHu08u592nhskobR9Fw3HsjKeLMwCWI4Vwu69i8arzqD2dehQtZlE8hIHewV/Joigh8po/Qz4VEmAaKm8Mj7ZTiiw9YoxX6pQQNbRp381jtlN
OMfS8QKCaAAFLjFguMbAmhYSSBgAAeRTtgZBLU0ESBBGCTBxIcF9V0VQ6RI1iFrFIURGa5JKEEOoctS6rIGGcgqN3PkAohQw0ubY65Dj+HUkEfEYR88xFxjaJIwhZo/pyIgAoh0SivqTlkeowGwNQY6MhjmUxGNs4E0cc+UROpr6TAWpALxHYfFtz8ezTmvMBZC1FlAcWktpaRPudEhCitplh1KAk7lWtIApIvnrLYmTDYrhNuufukAinW1KceU8
4xzzuyqUsupbBHwNK/uMnpwcS1dOWNW9pcS6mJ0GWoYZKza0TSiPneZNcpmdsrtXWupdO1Nyzu6geZzu4lF7m3TN7cznOELUPAmdySgPJKOkoom8dZvIkrvPy+8UKJh+afc+KFJQzCSAWpMHiwUrAhbgNo0L37PnhffH+uw4A812LgZw8R9I7mcNgRCRgADS4xriaD5lC/sKDWVUowRCdViJGU8uZUQyl6B2XkK5TONEWwlq0JWtSAVvINrCuYWK
2UVjWQ2LsTKtCyF8ZCJGEq8RqqoIkyhCNQ1EgdX2j1a6A1mqjV+i0UGLYEN8GokjGKM64opRHVOWjMx2cgKwyAoYxGJzuMTQrHavGNzArjBmPTVsbrW5oX8d6oJfrQlBoiVE+W4bYkN2jVkxJaA40vIqDwJNBslxppbvkzNEBs0lNtnmx2BbnbVI6VGyA9S32VuafnBtA762B16TUxLEB8AtoMEM9OHbcvGj9r24dkatiDoWSOsrvIx0hbWW3PZX
ctmztDesxdsntDyYmIpgtt1uMlA0wY45k94hrrABusAW7nkJvYvu09AUWigq6Ies9AKxFJGTAqvTD9H3xBfWlCtb4mmlByugJdkhXgAEcKAcEeKMQqCBYKMU0MA4BbBhZ3foGGODFK8TjWpZ1Olj08FQ3Q6TR6CHsMWimryUkFD8NMsWjQuhpGRUUe4CKlhgojpzyOjTfUZ0lThhhrJo88NF5E1Aihvj8i3qOgycokTaiAbiZBtoqTaHHZzwXoTX
hen0a2XDC0Inx1SfDdtdwcCMx5TJh4He0orqmb5N8TZwJvqQkBrCcG5zaEByueq0jzzsbkm7t4AFjJWScnprNpubcxS7VRftvm5dSXi0NfdmWz2n9zvlfS9lmtPvSjdJD429zSXCspzbSV0ZYeoQVaHf2pPsziCVbTwlrYTXVl7La9O7Zc7dlnP5wdee+MhfEy2TwCXFficnQNMN6bs35s7teegIIRA5BYI2yFAKOoVt/PPaiCUp0FRHVig+tYuA
hgndhWdrKl2f5tCEHzEi1xmC3FRKaXYPMQGaDgC0IwfMWj4FeOS1BwP0E0uQw9EakOCMP8wzfgkCOyFm7JF56HdIMckZQjI3WkYUo15Hx1kxHmAkgmVQkW+VlVYRrG0FgPpxfw1Q5yZ0UWTTZyyUZ2gGNQkzBjQmkyhwJk0y40bAgi40tTF2hiGFl1aFGBGANBQLQjVwnVKC1x9WCX9UDXCRli6yNxiVN3iXN1R1QB80W38zSWTTt2C3zzCwi1d0
PGiwqSLRdnT2Sy9nO0eRKAWytwgAHAM2IgPQHzRCvWHzCnDD2gTAJiFGn0fnWBaAXzhVSxXzWD5iGA4FwAQD5hxWYGuGAXuDaFhGcGiDu2UAAE0hAr84d2o78+8eNcE0NnUu0WUsMJoP8OVv9uUUiiNMdADscQDccqNdoYxJcScbpzomMxVetYCYwpUeE8YGdRN+NmchMVFiBcCNETUedwY0MWMK92gkhldlMRc1NuBZhyim9DQVNSYDMcw7p8w7
oYpPEGZLMNcPUeAAArbAGcP4W4BAa4RwegbAXYZ4eIDgcYfQIQKgQ3L4IQztGNMQptSAFNILY2ZrApC2Z3HNN3cpWLSpdQnPC8P3JfC7SAPPdghdTuIvTrddUvGEsg7TYxWYuoZwKQgQydTuUYOeIYkYmXRdHEivQsGUUsUsSvKbEvbrTuRIQY1VfE1EkoJdMg6AjjSRSkzEkoNrOgxdWkg6Ek4sckleKk1rMvJEibExRdIYHZaktuevA6PEm+Ak
zuZwaUkUrEuU3E+kpUxksAVUlkxMNkrjGU0UzuSArTCU3U/U0eVklVdkk0jUuoeMLZa0qAw0u0409Urks5RGLU4YnUkbPUw5ICW05Ajk+E2Up0uIcbIxXTF04MygmAzjRyL06EtuUReMh070zuMfF0toA0pM+01MtreUcU2MybF06Mt0wsz0zktMp0/aBU7U0YysrM+skoS+MsnTCsxdDEiM00tuOUP0hkwMwUOeAUskkRFMustrE8LslEwMpIMg
g8O6fGfGMecMmbBEwcz3Ds5c7hNc8UFGNs2c/MmM7syUzuNoE8s5I8ecuMs5Pkw6KXG6O6G8zuOvYcgMrZBMlchVe2I8t84s2880secsy8tucYd8wc0C5Eh8s0+8ybaCuoAYps/0lsn0pc88hc5CjsxspY5s5U9MvsrcyMvCr8jCnMqsi08CoCmc28/C26Qi3UoUKY6XOi/sx08iuk9Coip0s8o5Wizc+dWcxixUyi9MtU+ij8sS5iwMsfRC484C
mSiivikoJGNi184S7clC2Cy0+S+U58io5vDi0igclChMuCnsnMqC5Swcp8pi3ili2y6SncrZUs7C3TXCsAOczy6y9Mxixvdi7SsinyqRAKzSkykK8yjs7GHikc9ywKl8qK7y3reK7828uEsyrisAeUWvLKkSn0wyxyhKzK1Kyy/S/K1Khy8StS3KpK4ymY6KnK0RRS5ytq5q7M9M3c3Klyzirqp0oktC0qmy1K6isCi85ysajq9y4qoKrSsa2ayK
pq1KuK4ajKnMua5Klauyp0tagipywMzsvypS1yva1S3UochvbalvXa9S/akqjawcoaoy6Y26s6+6i6o6qS/q9s3Kh62qy6vSoS1ar6rZThDq0G9KiSuoQRa6xq9636ksgGuS8GkiwqnMlGw6tGyGu6/6sGs5UYcaqy069dO4mPAZIrePYgEZIMdPVga4grKoLmQIGcWlNAUycEiAOAVm5gTBDNHQ7dNCRbAwwISsYwlbFkcK+oTbDgEfcKEFICCY
YUewx9cYZwsEhFCQIlDgAcFoYBKAZwW4JIa4BEEiZQOAW4NgGAIwFOGI9I0HWlFDJ/NHRI+EWInDL/FHeaQjf/flQooVYosA6jHE+TCUKUOseUKo0oZCZwSxTUbUXUaXaOt2p6FojA3VLA/VHA9OvArnU1Xnc1NAJc+0FI0XcxEu1kFIsmZ8UCUUEYoYFItgqzUobY3Y5gfYw4440484y46424zk0Wk3R40Q2caPCAN47JOQjNJ3K2SLZQ93GLT3
fLb3YE33ctFLQPRrFZKEwvDrbyyuqmDrWjVEVvfpJOKmtOGm0rNe0mQgRm4pFmykdm1ATm3PXm/ms2QWvQzvdCFSSWtAG1Y+WW+Wr5IUJGRsVW2fGYDWze5fRYH+BEcYYBRieIfALmU0e2t/dAR2+/DDBlIu3/VI1/NqYgNgK+rI725/NCPIgA+MAOphYO3aeMAso06WiAZjUsqnMeWnYXZo9A7VNorO4THOgR7oggs1fBUCfM+2CRWTNbFMK9Hk
1TK1cMHEk8cRBUQ+KYeGOw7qeY0jCYNbdoWxczLcdY7sMLY3IcYQjzNWH/F4ie2Qj4+Q2el3fcBe/45ey8eLRxzQgPeBgwr8H8P8NEGGKYYUY6SUEsWmdbSAT8bIeCRCfAS6OicidAPmNgOEF8K0V+9MVAP0CgPyVAEMdQJYIiSgZSbOCATJ7Jz8UgPJhAApoGIplgEptQSQcptJhifiViLyBATiEw3iAgXpwSPSOAESL8cSCkUgNzGZeSfwJSdJ
mprJ2EHJhp9QJpwp4p0pzprgdkXSAyIyUJjm0gMyZ2BAayVR+yac9vYW/Q95YB0wi+S+Cw/5ARa9UzGURGKBhKRiWBrQwJq7PxYgDFQqe4C0WETARiEiYWW4QgVUuASyW4fWrBtqXBhI4hghmTFDD2zI3DH/XIv2+hcjIo4ukolCOc5eWsXGQKGUaYOJjhgRdUNbQ+HUI8UsRuyCfh/6DOwTYRjoro/A7nSTPowh5MAXKvJeGvXkcu9TLC4COu8C
SCFguYkpYbeGZXUzMx7xFuiEmYXYSyCgYWPmSQMDFoSyffa4YWIYM42CLmLgcmoemxke+xi3D1SQm3UoSe+3T4hQn4+e6UFQgEtQ3x8e/xl8Vw5PYPaOUPW+utSOSPTtArSmuPK+2m7ORxzEFPOrWxhNrPRZdPSEvVveqdbypdBywXaV1VuoEYMgpVyg6csm+5b+jvbeZbJ5z5C+a9N589W+MfYULUX5p+R4AFgJrm4FrmNoZwYWLmSYIlbANoO7
IwNseIR4RiRiQqV4JIDFNFkHJDTF+lVDQh6u2HdIz2kQ7IsQolvlEl4AwO8lphyl/MwKPUA5eMYUdc9hy6YUDUI6WUTURuy+OUFOrFtOgRgTd6AV9nXlvOzREVwg0oYg8MGq1G2V8YtARuvrMUcOosED1E/TJxFMNbHUlXF1NY9XFrRuA1o1k1s1i1q1m1u1h1kNfq51iNV15YH/CQq3PsrdV45x3JGewpANpQoNxe1QupVevx0EuBrm7NmNtpTL
RN2NqPGZFNi+tN9tRPeNrtHNvtQt3T2rAz+rXT4tjYnK2E7y0CAmzuLDsOyUPDpCudNeTdDee53+x5tCE+AKO+bzkByw6kBVO6R2bR4d9YTBi4N+U7OTrWrvZQLmfAZQYWZ7LmRiV4BEXYIQIwEiEiWELmGAf5wHa/dFg98HR/ZI3F89/Fr2vDH23lYjf2wVRhtCFhPGF9knd9sYf8uA6ouVRIW9AD8CSmEDnlrVSDlnb17AtWIV/O3oogtDZeuV
7gIB7BAx1ARsThRsYYszVYizSjvZbmmj410181y1nma12154e1x1we6xjj9PJ4rsHjzvPjmQ1NFx4T74uesTspD3OLZN2TwF+T7tf2JN9PCPVT5N2PYra+nTrN0Hgt0zxx4zqrUdHektqdfevGpdF01dFzlttzp5NtryDt/z553gEsXt8KYY4b5eSB++cFWfXYMdyNre7KH+V4LYuAegCga4CIvmU0Y4OAa4PmCIuALcBACgCIkOYr2IjF8rpIk9
qr7BjIokAlnI3229rHZr0A1rtETs19+ILrz98Ub9iYnEwb0koD4YvK1A8D2Dib9omDrVcRhDyRqHFMbD0UAbRMIbAj5btAIm1hj0mtwj2uzbm+CUMjiAZuiz0oOAY7ujs7xjq7m71j7K+Jh4x70epJD13jr1gTj7oTx3ETn7jx8TrxgHjQoH8doPMHqHiHrLRv3TjT1tdNm+hH/TtHpvzPVPQzxx8zqjgamdbHj6vUr3/rUzP3mGkoYPm090sM1v
Vtjz9tikEwrt3gRg6ntEKYBMSYBUGPw7WfZ4Vn99DntYUgHgBqGYLmZwLmXYE8JINsVEa4cYRicYTQfQAHD8eDB2sr52pV3t54t1etXQllr0a53tSgOOR9vr2pCllqWyueeHSylC3RycQfOIIjFZDC4UwsocYAmDG6vRMCToabqolg5u8C6YrKRsVSrZ04xi1zVAFMHoJb9boaoQ0DqwsaHdE+hrE7vR3O6XdmOt3NjvdzmZ5YnuefVfqkiJ625i
+DuULG41+KeN/ugJMNup1r5s9AmCnBvkp174ZYNCMPamhm07RaCkeebDPKYPR7jpMeMJMfkjVvI0CpWdArZFMGX7SCha2sX+t3kIC94N+R6S+Hph86gN4BkoGUFKCCiM8Z8CUWCGfyjbbAf4+kbABwEYjPBbgIYIwK/30hQZ4gvQe/lsVhBUA5e//eIor2xZQ5T2aRVXhezsZUNXaEAWhk11JYPtuQFLfnKgPthUw7Yh8IUHpljpe8TwRNeeFqHx
hngkwhA1osQNZzZ0ZuudCgfNyQ5oZSCo8Btiq3oE0FUAaoZgfGAJiNh7E7AvbuYwO6+JuBtHU7gxwu5MdruLHJ1iILMHiDvMluV7oXycayC/WCgwNn9yXrV9W+6gxpCvw8HjRAg+EHHAA14A1gd+QfWUKBBPCmMIhDhXAIVBiHs83CEgV4MwGIBEoSIqIGAG0HoCmhRgrwcYM8EKg8xmAWxTAI8GuB7tb8YOQAcr2AHpEyGFDDXtewgH5F6GuvIO
nAMYEKsdQ0YUUCMCaroDWEWobQPgK1CUxJqemI9rgSd7QdRGjvBADMDwgDMPeAiASiBDAiNtVh5iQsBVSErMDdGrA0CE3Qo5fd7iw9HPm6zEIvd/wTwn1tPVL7fd3G1IP4soNDaA8N6wPP4fGn0KGFxalAXwVpFIzL1AhgXXgEBHJJzBGWx/BKI1Ci4woXCSIhBmsFghEouYwsfSPoCgBgZzQFAQQFKCGA8wMUPMSQLu0KGq8FetInFvSNV6Mi9w
zI+rjQ2JY69GhLXbaCyC2oI1QOsdURPmQTpHkuxYwvllBxIFTCyB43RUcqOOCqji69bTUSsOoLmIaMC/GsmHxrosgIIpJGlhwIO5WNs+unO4bp3tGfdHRpQRQhXw+GScvcQJGTp6Lr7b0rB8fP6lZzxpF50aOlUfmcnVGJk2GnVZ8VslAqhlkyf40tjmR5E/jQ+IErHj6QeoTkYmleA+u5RepE0iwk5BCa+PcrfigJRZcfkXgUorjfxiEn0n1Uz7
/ifSjFOCUKXfGhU3x4E7CbWTsE2Dby1EmKu1mYkh8l+GE28teS4kfksJi/YCURI/I/VSJoEwcsVUolTkhJMFDiYJN4ltxOE0k2GnRIEk4TGJbcIvHDQOjzUUq8k2GuNXolNtRJU6OcRQQXGE0eJuE0ycqyoIWTZJak4yYiSWHzjbJ2JByjpJ2pWTnJZk1yQpJEkY0NJ1krUeDQTKGSoJTkxVi5JrZz9Oxb1UygFJ7hBTzJ2JEiQlJnRJTfJsNQCa
pIYmOTAp3kmydFLACTF4acU8KflMik+SipqqA+hlOqkqTVx5UxKQVOClfiHqHkxGnlOamVTCpgZWULVJanJS24y46soRNfF1S+pBknKUZNmyZ98sBgjvvD3HoM0xwj9D+hCFObnNGs608IF/TcE/1xofozwAUM7ZHpJQ4IynmIlrD9CDsTPBKG2ERFAsf4+KOwCRFBDMBNAmgUYCRH0i9AIipoeIFsXwBVwqRiGYoVWLKEq9SG5DesWAM14Nc2RQ
BaAWS2aFPt4woU6aUKOHgwx+xOoQcfbxlFCNRxIjaYRB0nFiBpxhdfBEtww6oBkJtAvhvoycROopgoEWYDuLNFZ8LRB43PunmPEl95BZfZ0TbCUGfCVBHo/3BoK5pD8C80EmEkpKZINSxpuE2wV1M/ERSQy00pqerPTLLVOpaUruDNR9J6z4pH43KpK14YyscyJs7WT5Xco2zrORs62aVOCreV6ZjgxmR+W8o9UppjUt2RbOrxFTfZys9SShSdmD
l7JuUg2dLQ7KpUA51bI6nHIrwMyrZFUzWX7LxoPUU5RUgqmbJjnF5x+xNSqmWzxruzLZOc/2cnI9mpzup6ckOWrOKnxynBxsl2QtTxpFz9RLc7STdVNmhV857UnubbKznVyipA8hGr3NYnDzy5i5SOTNLNlTzA5i5JOQdGzlLyCebHNvpfW0501dOK0pmggCfps0Npr9M5tLJ2kC1N04Ac2OsDgBwAAQxSCQdAHTCZA1gO4UgNeE6AMBCAUvR4KQ
M6K50bQxwIBcAs+AQBsAIgUGG2CqD6AAQvGABUTNKDgLC4JsKBRkF/ljj/5ZMpURTNAVILIF0C2CH/wrEADCgYCiBSgugWwKle1YxBeQuyCoKYFZ7WsTDPJify8FFCjIPpE5TgDSF7C+hdAqJTNiCibCuhVAAYWwQ4ICEJCNQ0gB8KxFBC4JsZHDBbQyFyC/hRkCqajN+mgzERWovkUZB75Pafvsj3cyqL8FGQZ4HMmMU/wQYRcXBaIoYWVYSI+h
ScKAuYDYAYQvwHmOLglRrYhQByRMLtgZ6kwPFFofABETMIS4tQSYMYJqDWyXwFoEAIwFk30ASD6gBAMyGiAciShNQGJLdGYo4X6AuFVorsCSCySgK3QJAEJn5hUWVLiAAIBABM2rCfy6lVtFYJYtwCaBggsXUhXUsZzPJHgFoH+KQGUDOgAAFPWGoC8AkYUyyZdyASAABKYkIZGUCrStUIy8ZcrjZBb9tlWyqZUuXiBLLBaYCzVFzAICwoqgaSoS
HAC5jmBYQz3XxOkFyToKSZywPVpAEAVAKhgxwSbmhAUSjxIQpQG0GIGwDEBsAZKLZNqlwDHAFc9iQFR8sTBQRG6GfUiRgDkJUL4Q7yiegVkfDwrtUd0A0HGDxU2hEVR4JKJCv+XAQ8VswoMNNicjHK5FGKhAIIs0hAwS07HQyHFFIA5ZxCFcLwl0qcRv1eQ2AHvNwCFVoQvCL8zaVzWEBQAd40q45XYC2J4QcgfwLwpbTYDtL+V3S4Hp/NBAERGA
JELJvgCuUi0wgwQGiFpC2DgLMQBgZxZ3lvGSzz+zaTEIxBoiGrjVocZyOAHSQGEfgu07zPSqchAA
```
%%