[[Harmonic Oscillator]]
# Lagrangian
The [Lagrangian](Harmonic%20Oscillator.md#Lagrangian) is as follows
$\mathcal{L}(q,\dot{q})=\frac{1}{2}m\dot{q}^2-\frac{k}{2}q^2$
# Hamiltonian
The [Hamiltonian](Harmonic%20Oscillator.md#Hamiltonian) is obtained from the [Lagrangian](Harmonic%20Oscillator.md#Lagrangian) through a [Legendre transform](Hamiltonians.md#Legendre%20transform). This gives
$\mathcal{H}(q,p)=\frac{1}{2}\frac{p^2}{m}+\frac{k}{2}q^2$
Alternatively we may write the Hamiltonian as
$\mathcal{H}(q,p)=\frac{1}{2}\frac{p^2}{m}+\frac{m\omega^2}{2}q^2$
where $k=m\omega^2.$
## Energy of a 1D Harmonic Oscillator

Thus the energy at an initial displacement is given by the potential in terms of a known displacement $q=x_0,$ such that
$E=\frac{1}{2}m\omega^2 x_0^2$ ^8583bd
# Equations of motion
## Lagrange Equation of motion
The [Euler-Lagrange equation](Euler-Lagrange%20equation.md) of motion, a [[2nd order ODE]], is
$\ddot{q}=-\frac{k}{m}q = -\omega^2 q$
where $\omega^2=\frac{k}{m}$ is the [[Frequency]].
### Solution
The solution is a classical [superposition](Superposition%20principle.md) of $\sin$ and $\cos$ functions:
$q(t) = q_1 \cos{(\omega t)}+q_2 \sin{(\omega t)} = Ae^{i\omega t}+Be^{-i\omega t}$
## Hamilton Equations of Motion
The [[Hamilton equations of motion]] in terms of [Conjugate momentum](Conjugate%20position-momentum%20coordinates.md), $p$, are
$\dot{q}=\frac{p}{m}\;\;\;\;\mbox{and}\;\;\;\;\dot{p}=-kq$
### solution
The pair of solutions is as follows where we can treat these equations as [[2nd order ODE]]s.
$(q(t),p(t))=(q_i \cos{(\omega t)}+q_s \sin{(\omega t)}, -\omega mq_i \cos{(\omega t)}+ \omega mq_s \sin{(\omega t)})$
# 3D Harmonic oscillator
These results generalize trivially to the [three dimensional case](3D%20Harmonic%20Oscillator.md)
#Mechanics
#Mechanics/WaveMechanics
#PhysicalExamples/PhysicalExamplesInMechanics