# Index
[[Binomial distribution]]
[[Continuous probability distributions]]
[[Discrete probability distributions]]
[[Error function]]
[[Exponential distributions]]
[[Gaussian distribution]]
[[Lorentzian distribution]]
[[Probability density functions]]
[Quasiprobability distributions](Quasiprobability%20distributions.md)
---
# Basic concepts
## Probability distributions
We find that [probabilities](Statistics%20and%20Probability%20(index).md#Probability) can be modeled as [functions](Analysis%20(index).md#Functions) of [events](Statistics%20and%20Probability%20(index).md#Events) called _probability distributions_ or _probability measures._^c3a77a
A [function,](Analysis%20(index).md#Functions) $P(A)$ is a [probability distribution](Probability%20distributions%20(index).md#Probability%20distributions) if it satisfies the following properties that we accept as axioms:
1. $P(A)\geq 0$ for all [events,](Statistics%20and%20Probability%20(index).md#Events) $A.$
2. $P(\Omega)=1$ where $\Omega$ denotes a [sample space.](Statistics%20and%20Probability%20(index).md#Sample%20spaces) ^a36c41
3. If the elements of the [set](Sets.md) of [events](Statistics%20and%20Probability%20(index).md#Events) $\{A_1,A_2,A_3...\}$ are [disjoint.](disjoint) then for a [partition,](Statistics%20and%20Probability%20(index).md#Partitions%20of%20sample%20spaces) $\bigcup_{i=1}^{\infty} A_i$$P\bigg(\bigcup_{i=1}^{\infty} A_i\bigg)=\sum_{i=1}^\infty P(A_i)$
### Uniform probability distributions
A _uniform probaility_ distribution is one for which [the sample space $\Omega$](probability%20distributions%20(index)#^a36c41) has a finite number of elements each with finite [probabilities.](Statistics%20and%20Probability%20(index).md#Probability)
# Bibliography
[Wasserman, L., _All of Statistics - A Concise Course in Statistical Inference_, Springer, 2003.](Wasserman,%20L.,%20All%20of%20Statistics%20-%20A%20Concise%20Course%20in%20Statistical%20Inference,%20Springer,%202003..md)
#MathematicalFoundations/StatisticsAndProbability/ProbabilityDistributions
#MathematicalFoundations/StatisticsAndProbability/ProbabilityDistributions/DiscreteProbabilityDistributions
#MathematicalFoundations/StatisticsAndProbability/ProbabilityDistributions/ContinuousProbabilityDistributions
#index
#Bibliography