# Index [[Binary numbers]] [[Combinations]] [[Congruence relations]] [Continuity](Continuity.md) [Integers](Integers.md) [n-tuples](n-tuples.md) [[number field]] [[numerical sequences]] [[Permutations]] [Rational numbers](Rational%20numbers.md) [[Real numbers]] [Signum](Signum.md) [[Ternary numbers]] # Basic Concepts ## Numbers ### Number sets #### Natural numbers #### Integers ![](Integers.md#^056f6b) ### Modular arithmetic ## Counting At it simplest form _counting_ is the process of assessing how many elements are in a given [finite set](Finite%20sets.md) and this concept is built into most languages and cultures. In mathematics, this concept is extended and studied in the field of _combinatorics._ ### Encoding information with numbers %%Here go into the elementary connection between numbers and computers%% # Bibliography [Altland, A. von Delft, J. _Mathematics for Physicists_, Cambridge University Press, 2019](Altland,%20A.%20von%20Delft,%20J.%20Mathematics%20for%20Physicists,%20Cambridge%20University%20Press,%202019.md) [Barrington, D. M., _A Mathematical Foundation for Computer Science_, Kendall Hunt Publishing Company, Preliminary edition, 2019.](Barrington,%20D.%20M.,%20A%20Mathematical%20Foundation%20for%20Computer%20Science,%20Kendall%20Hunt%20Publishing%20Company,%20Preliminary%20edition,%202019..md) Schollwöck, U. _Formalismus 1_, T2: Quantenmechanik Lecture Notes, Winter 2019/2020 (German) ![](Quantum%20Mechanics/File%20Repository/QM_-2-Formalismus-1_2.pdf) [Wasserman, L., _All of Statistics - A Concise Course in Statistical Inference_, Springer, 2003.](Wasserman,%20L.,%20All%20of%20Statistics%20-%20A%20Concise%20Course%20in%20Statistical%20Inference,%20Springer,%202003..md) [Weisstein, Eric W. "Sign."" From MathWorld--A Wolfram Web Resource](Weisstein,%20Eric%20W.%20Sign.%20From%20MathWorld--A%20Wolfram%20Web%20Resource.md) #MathematicalFoundations/Numbers #MathematicalFoundations/Numbers/Combinatorics #Bibliography #index