---
aliases: [permutation, permutations]
---
#combinatorics
## Definition
> [!tldr] Definition
> A **permutation** of a set of objects is a possible rearrangement of those objects.
**Notes:**
- The number of permutations of a set of $n$ **distinct** objects is $n!$ ($n$ factorial).
- The number of permutations of a set of $n$ objects *not all of which are distinct* is less than $n!$ because simply computing a factorial overcounts the repeated objects.
- The Python library itertools contains functions for enumerating permutations of sets. More here: https://docs.python.org/3/library/itertools.html For example the following code will print a list containing all 420 distinct permutations of the word "success":
```python
import itertools
p = itertools.permutations("success")
# The permutations function includes duplicate elements.
# Converting the list to a set and then back to a list removes
# all the duplicates.
list(set(([i for i in p])))
```
## Examples
- There are 6 permutations of the letters X, Y, and Z: XYZ, XZY, YXZ, YZX, ZXY, ZYX.
- There are 24 permutations of the letters X, Y, Z, and T:
```
('x', 'y', 'z', 't'), ('x', 'y', 't', 'z'), ('x', 'z', 'y', 't'), ('x', 'z', 't', 'y'), ('x', 't', 'y', 'z'), ('x', 't', 'z', 'y'), ('y', 'x', 'z', 't'), ('y', 'x', 't', 'z'), ('y', 'z', 'x', 't'), ('y', 'z', 't', 'x'), ('y', 't', 'x', 'z'), ('y', 't', 'z', 'x'), ('z', 'x', 'y', 't'), ('z', 'x', 't', 'y'), ('z', 'y', 'x', 't'), ('z', 'y', 't', 'x'), ('z', 't', 'x', 'y'), ('z', 't', 'y', 'x'), ('t', 'x', 'y', 'z'), ('t', 'x', 'z', 'y'), ('t', 'y', 'x', 'z'), ('t', 'y', 'z', 'x'), ('t', 'z', 'x', 'y'), ('t', 'z', 'y', 'x')
```
## Resources
<iframe src="https://player.vimeo.com/video/626473882?h=92e0a801af" width="640" height="360" frameborder="0" allow="autoplay; fullscreen; picture-in-picture" allowfullscreen></iframe>
<p><a href="https://vimeo.com/626473882">Screencast 4.8: Rearrangements and k-permutations</a> from <a href="https://vimeo.com/user132700952">Robert Talbert</a> on <a href="https://vimeo.com">Vimeo</a>.</p>
Other resources:
- Tutorial: [Combinations and permutations](https://www.mathsisfun.com/combinatorics/combinations-permutations.html)