1809202318:28
tags:
# Little Fermat's Theorem
Little Fermat's Theorem is a theorem invented by Pierre de Fermat.
## Theorem
Let $p$ a prime number and $a$ be any integer.
Then $a^{p-1} \equiv 1 \pmod {p}$ $if$ $p \nmid a$ **or** $a^{p-1} \equiv 0 \pmod p$ $if$ $p \mid a$
### Equivalent theorem
Let $p$ a prime number.
Then $a^p \equiv p \pmod p$
## Example of usage
This theorem is used in the [[3. Permanent notes/Miller-Rabin Test|Miller-Rabin test]] that leverages probabilities to check if a number is a prime number or not.
---
## References
1. [[2. Literature notes/Little Fermat's Theorem|Little Fermat's Theorem]]