# How to build the virtual cell with artificial intelligence: Priorities and opportunities
> [!info]+ <center>Metadata</center>
>
> |<div style="width: 5em">Key</div>|Value|
> |--:|:--|
> |文献类型|journalArticle|
> |标题|How to build the virtual cell with artificial intelligence: Priorities and opportunities|
> |短标题|如何用人工智能构建虚拟细胞:优先事项和机遇|
> |作者|[[Charlotte Bunne]]、 [[Yusuf Roohani]]、 [[Yanay Rosen]]、 [[Ankit Gupta]]、 [[Xikun Zhang]]、 [[Marcel Roed]]、 [[Theo Alexandrov]]、 [[Mohammed AlQuraishi]]、 [[Patricia Brennan]]、 [[Daniel B. Burkhardt]]、 [[Andrea Califano]]、 [[Jonah Cool]]、 [[Abby F. Dernburg]]、 [[Kirsty Ewing]]、 [[Emily B. Fox]]、 [[Matthias Haury]]、 [[Amy E. Herr]]、 [[Eric Horvitz]]、 [[Patrick D. Hsu]]、 [[Viren Jain]]、 [[Gregory R. Johnson]]、 [[Thomas Kalil]]、 [[David R. Kelley]]、 [[Shana O. Kelley]]、 [[Anna Kreshuk]]、 [[Tim Mitchison]]、 [[Stephani Otte]]、 [[Jay Shendure]]、 [[Nicholas J. Sofroniew]]、 [[Fabian Theis]]、 [[Christina V. Theodoris]]、 [[Srigokul Upadhyayula]]、 [[Marc Valer]]、 [[Bo Wang]]、 [[Eric Xing]]、 [[Serena Yeung-Levy]]、 [[Marinka Zitnik]]、 [[Theofanis Karaletsos]]、 [[Aviv Regev]]、 [[Emma Lundberg]]、 [[Jure Leskovec]]、 [[Stephen R. Quake]]|
> |期刊名称|[[Cell]]|
> |DOI|[10.1016/j.cell.2024.11.015](https://doi.org/10.1016/j.cell.2024.11.015)|
> |存档位置|12|
> |文库编目|45.5|
> |索书号|1|
> |版权||
> |分类|[[AI New]]|
> |条目链接|[My Library](zotero://select/library/items/ZDWPL2PK)|
> |PDF 附件|[Bunne 等 - 2024 - How to build the virtual cell with artificial intelligence Priorities and opportunities.pdf](zotero://open-pdf/library/items/GVBIYTP3)|
> |关联文献||
> ^Metadata
> [!example]- <center>本文标签</center>
>
> `$=dv.current().file.tags`
> [!quote]- <center>Abstract</center>
>
> Cells are essential to understanding health and disease, yet traditional models fall short of modeling and simulating their function and behavior. Advances in AI and omics offer groundbreaking opportunities to create an AI virtual cell (AIVC), a multi-scale, multi-modal large-neural-network-based model that can represent and simulate the behavior of molecules, cells, and tissues across diverse states. This Perspective provides a vision on their design and how collaborative efforts to build AIVCs will transform biological research by allowing high-fidelity simulations, accelerating discoveries, and guiding experimental studies, offering new opportunities for understanding cellular functions and fostering interdisciplinary collaborations in open science.
> [!tldr]- <center>隐藏信息</center>
>
> itemType:: journalArticle
> title:: How to build the virtual cell with artificial intelligence: Priorities and opportunities
> shortTitle:: 如何用人工智能构建虚拟细胞:优先事项和机遇
> creators:: [[Charlotte Bunne]]、 [[Yusuf Roohani]]、 [[Yanay Rosen]]、 [[Ankit Gupta]]、 [[Xikun Zhang]]、 [[Marcel Roed]]、 [[Theo Alexandrov]]、 [[Mohammed AlQuraishi]]、 [[Patricia Brennan]]、 [[Daniel B. Burkhardt]]、 [[Andrea Califano]]、 [[Jonah Cool]]、 [[Abby F. Dernburg]]、 [[Kirsty Ewing]]、 [[Emily B. Fox]]、 [[Matthias Haury]]、 [[Amy E. Herr]]、 [[Eric Horvitz]]、 [[Patrick D. Hsu]]、 [[Viren Jain]]、 [[Gregory R. Johnson]]、 [[Thomas Kalil]]、 [[David R. Kelley]]、 [[Shana O. Kelley]]、 [[Anna Kreshuk]]、 [[Tim Mitchison]]、 [[Stephani Otte]]、 [[Jay Shendure]]、 [[Nicholas J. Sofroniew]]、 [[Fabian Theis]]、 [[Christina V. Theodoris]]、 [[Srigokul Upadhyayula]]、 [[Marc Valer]]、 [[Bo Wang]]、 [[Eric Xing]]、 [[Serena Yeung-Levy]]、 [[Marinka Zitnik]]、 [[Theofanis Karaletsos]]、 [[Aviv Regev]]、 [[Emma Lundberg]]、 [[Jure Leskovec]]、 [[Stephen R. Quake]]
> publicationTitle:: [[Cell]]
> journalAbbreviation:: Cell
> volume:: 187
> issue:: 25
> pages:: 7045-7063
> series::
> language:: en
> DOI:: [10.1016/j.cell.2024.11.015](https://doi.org/10.1016/j.cell.2024.11.015)
> ISSN:: 0092-8674
> url:: [https://linkinghub.elsevier.com/retrieve/pii/S0092867424013321](https://linkinghub.elsevier.com/retrieve/pii/S0092867424013321)
> archive::
> archiveLocation:: 12
> libraryCatalog:: 45.5
> callNumber:: 1
> rights::
> extra:: 🏷️ /unread、📒
> collection:: [[AI New]]
> tags:: #unread
> related::
> itemLink:: [My Library](zotero://select/library/items/ZDWPL2PK)
> pdfLink:: [Bunne 等 - 2024 - How to build the virtual cell with artificial intelligence Priorities and opportunities.pdf](zotero://open-pdf/library/items/GVBIYTP3)
> qnkey:: Bunne 等 - 2024 - How to build the virtual cell with artificial intelligence:Priorities and opportunities
> date:: 2024-12
> dateY:: 2024
> dateAdded:: 2025-04-18
> datetimeAdded:: 2025-04-18 21:43:51
> dateModified:: 2025-04-18
> datetimeModified:: 2025-04-18 21:54:14
>
> abstract:: Cells are essential to understanding health and disease, yet traditional models fall short of modeling and simulating their function and behavior. Advances in AI and omics offer groundbreaking opportunities to create an AI virtual cell (AIVC), a multi-scale, multi-modal large-neural-network-based model that can represent and simulate the behavior of molecules, cells, and tissues across diverse states. This Perspective provides a vision on their design and how collaborative efforts to build AIVCs will transform biological research by allowing high-fidelity simulations, accelerating discoveries, and guiding experimental studies, offering new opportunities for understanding cellular functions and fostering interdisciplinary collaborations in open science.
%--------------ω--------------%
### 总结:利用人工智能构建虚拟细胞(AIVC)的愿景与挑战
#### **背景与现状**
- **传统细胞模型的局限性**:现有细胞模型(如基于微分方程、随机模拟或基于代理的模型)无法全面模拟细胞的多尺度动态性、复杂非线性行为和分子多样性,尤其在人类细胞等复杂系统中表现不足。
- **技术革命的契机**:AI技术(如深度学习)与多组学(omics)数据的爆发式增长为构建**AI虚拟细胞(AIVC)**提供了机遇。AIVC旨在通过多尺度、多模态的神经网络模型,整合分子、细胞及组织层级的动态行为,实现对细胞状态、功能及响应的模拟与预测。
---
#### **AIVC的核心目标与能力**
1. **通用表示(Universal Representations, UR)**
- 跨越物种、模态(基因组、转录组、影像等)、生物尺度(分子→细胞→组织)和状态(健康/疾病/扰动)的通用表征。
- 能够融合多模态数据(如单细胞测序、空间转录组、显微镜成像),并从已知状态泛化到新状态(如未观察到的细胞分化阶段或疾病表型)。
2. **细胞行为预测与机制解析**
- 动态模拟细胞在遗传扰动、环境刺激下的演化(如分化、癌变)、预测扰动影响(药物、基因编辑)并推断因果机制。
- 通过跨尺度建模(如原子级的分子互作→细胞迁移→组织形成)揭示表型机制。
3. **虚拟实验与数据引导**
- **虚拟仪器(Virtual Instruments, VI)**:模拟真实实验(如体外难以培养的细胞表型预测、低成本测量替代高成本组学数据)。
- **主动学习**:通过不确定性评估指导实验设计,高效填补模型知识缺口(如优先生成关键补足性数据)。
---
#### **关键技术与挑战**
1. **多尺度建模的自我一致性**:需确保分子、细胞、组织层级的预测自洽,并适应时空动力学特性(如基因表达与蛋白定位的关联)。
2. **模型的可解释性与实用性**:在复杂神经网络性能与生物学可解释性间寻求平衡(如因果推理、特征稀疏化解释)。
3. **数据生成优先级**:
- 涵盖物种多样性(人类、模式生物)、疾病状态和扰动条件,结合时间序列与跨模态并行测量。
- 强调大规模系统性扰动数据(基因编辑、药物处理)以支持因果推断。
4. **协作框架与伦理责任**:
- 需跨学科合作(计算生物学、AI、实验科学),建立开源社区与标准化平台。
- 规避隐私与伦理风险(患者数据使用、模型偏见),确保受益普惠性。
---
#### **应用场景(Box实例)**
1. **药物发现与细胞疗法**:
- 虚拟表型药物筛选:模拟特定疾病背景下药物组合或细胞工程效果(如糖尿病β细胞功能恢复)。
- 疗效预测:考虑患者遗传背景差异,优化个性化治疗方案。
2. **肿瘤免疫微环境解析**:
- 通过空间组学数据整合,构建泛癌肿瘤微环境(TME)模型,预测免疫逃逸机制和药物响应。
3. **个性化数字孪生**:
- 结合患者基因组、单细胞图谱和临床数据,构建动态更新的“数字孪生细胞”,预测疾病进展。
4. **假设驱动科研范式**:
- 从实验后分析转向虚拟实验先行,通过AIVC生成假设并设计目标实验,加速科学发现。
---
#### **未来发展路线**
- **技术整合**:开发融合物理规则(如分子动力学)与数据驱动模型的多模态架构(如图神经网络、Transformer)。
- **基准与评估**:建立生物意义导向的评估标准(如模拟细胞分裂准确性、扰动响应预测)。
- **社区协作**:通过机构协作(如Chan Zuckerberg倡议)推动数据共享、模型开源与伦理规范。
AIVC的构建将重塑生物学研究范式,通过高保真模拟加速生命机制解析和医学应用,并推动跨学科协同创新。
## ✏️ 笔记区
> [!WARNING]+ <center>🐣 总结</center>
>
>🎯 一句话总结::
> [!inbox]- <center>📫 导入时间</center>
>
>⏰ importDate:: 2025-04-18
>⏰ importDateTime:: 2025-04-18 21:51:49
%--------------ω--------------%