# Definição
“A **data warehouse** is a storage architecture designed to hold data extracted from transaction systems, operational data stores and external sources. The warehouse then combines that data in an aggregate, summary form suitable for enterprise-wide data analysis and reporting for predefined business needs.”
The five components of a data warehouse are:
- production data sources
- data extraction and conversion
- the data warehouse database management system
- data warehouse administration
- business intelligence (BI) tools
Gartner IT Glossary
[Link](https://www.gartner.com/it-glossary/data-warehouse/)
---
“O que é um **data warehouse**?
Um data warehouse é um repositório central de informações que pode ser analisado para tomar decisões mais embasadas. Os dados fluem de sistemas transacionais, bancos de dados relacionais e de outras fontes para o data warehouse, normalmente com uma cadência regular. Analistas de negócios, cientistas de dados e tomadores de decisões acessam os dados por meio de ferramentas de inteligência de negócios (BI), clientes SQL e outros aplicativos de análise.”
**Conceitos de Data Warehouse**
Amazon Web Services, Inc
[Link](https://aws.amazon.com/pt/data-warehouse/)
---
# Referências Bibliográficas
**The Kimball Group Reader**
**Relentlessly Practical Tools for Data Warehousing and Business Intelligence –** **Remastered Collection**
Ralph Kimball
Margy Ross
Bob Becker
Joy Mundy
Warren Thornthwaite
Wiley
2016
**Data Warehouse Systems**
**Design and Implementation**
Alejandro Vaisman
Esteban Zim´anyi
Springer
2014
**Data Warehouse Design**
**Modern Principles and Methodologies**
Matteo Golfarelli
Stefano Rizzi
McGraw Hill
2009
---
# Referências Importantes
**Kimball Group**
[Link](https://www.kimballgroup.com/)
**Data Warehouse and Business Intelligence Resources**
**Ralph Kimball**
[Link](http://www.kimballgroup.com/data-warehouse-business-intelligence-resources/)
**Modern BI Platforms: The Role of the Data Warehouse and Semantic Models**
Cindi Howson
[Link](https://blogs.gartner.com/cindi-howson/2015/11/19/modernbi/)
**Data Warehousing Makes a Comeback**
**Data warehousing is not dead, but it is changing as new technologies, including Hadoop and Cloud Platforms, have an impact**
David Stodder
2018
[Link](https://tdwi.org/Articles/2018/11/08/DWT-ALL-Data-Warehousing-Makes-a-Comeback.aspx)
**Long Live the Traditional Data Warehouse**
**A data warehouse is more than a storage repository. Don’t lose sight of the benefits a traditional warehouse provides**
Mike Schiff
2018
[Link](https://tdwi.org/articles/2018/04/09/dwt-all-long-live-traditional-data-warehouse.aspx)
**Data Warehousing and Data Mart**
Microsoft
Zoiner Tejada
Hiroki
Christopher Bennage
Mike Wasson
2018
[Link](https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/data-warehousing)
**Data Lakes Are Cool, But You Still Need A Data Warehouse**
Henry Eckerson
2018
[Link](https://www.eckerson.com/articles/data-lakes-are-cool-but-you-still-need-a-data-warehouse)
**Evolving the Data Warehouse**
**The classic data warehouse architecture is in need of a retrofit. It must be updated to support a real-time, data-in-motion paradigm**
Steve Swoyer
2017
[Link](https://tdwi.org/articles/2017/04/10/evolving-the-data-warehouse.aspx)
**SAP SQL Data Warehousing with HANA**
Klaus-Peter Sauer
SAP
2017
[Link](https://blogs.sap.com/2017/12/19/sap-sql-data-warehousing-with-hana/)
---
# Trilha
[[Orientação por Dados]]
[[Agile Data Warehouse]]
[[Modelagem Dimensional]]
[[Dimensional Fact Model]]
[[Data Warehouse in the Cloud]]