# [[Rotation by 270 Degrees]] (Mathematics > Geometry)
## Definition
A **270-degree counterclockwise rotation** about the origin in the Cartesian plane is a transformation that rotates a point $(x, y)$ by $270^\circ$ counterclockwise, mapping it to a new point $(y, -x)$. This transformation is represented by the function:
$ (x, y) \mapsto (y, -x). $
## Key Concepts
- **Counterclockwise Rotation**: A rotation in the positive direction around the origin.
- **Rotation Matrix**: The transformation can also be represented using a rotation matrix:
$ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. $
- **Origin-Centered Rotation**: The rotation occurs around the origin $(0, 0)$.
## Important Properties
1. **Distance Preservation**: The distance between points is preserved (isometry).
2. **Orientation**: The orientation of figures (e.g., triangles) is preserved but rotated.
3. **Specific Angle**: Rotating by $270^\circ$ counterclockwise is equivalent to rotating $90^\circ$ clockwise.
## Essential Formulas
- To rotate a point $(x, y)$ by $270^\circ$ counterclockwise:
$ (x, y) \mapsto (y, -x). $
- Rotation using a matrix:
$ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}. $
## Core Examples
1. **Rotating point $A(3, 1)$ by $270^\circ$**:
Using the formula, we compute:
$ (3, 1) \mapsto (1, -3). $
The rotated point is $A'(1, -3)$.
2. **Rotating point $B(-2, 4)$ by $270^\circ$**:
$ (-2, 4) \mapsto (4, 2). $
## Related Theorems/Rules
- **Rotation by $90^\circ$ counterclockwise**: $(x, y) \mapsto (-y, x)$.
- **Rotation by $180^\circ$**: $(x, y) \mapsto (-x, -y)$.
## Common Pitfalls
- Confusing counterclockwise rotation with clockwise rotation.
- Incorrectly swapping or negating the coordinates in the transformation formula.
## Related Topics
- [[Rotation Matrix]]
- [[Transformations in the Plane]]
- [[Isometries]]
## Quick Review Questions
1. What is the image of the point $(-4, 2)$ after a $270^\circ$ counterclockwise rotation?
2. How would you represent a $270^\circ$ rotation using a matrix?
***
![[Rotation_by_270_Degrees_visualization]]