# [[Indefinite Integrals]] (Mathematics > Calculus)
## Definition
An indefinite integral represents the family of antiderivatives of a function. It is expressed with an arbitrary constant $C$ because the derivative of a constant is zero. The indefinite integral of a function $f(x)$ is denoted as:
$ \int f(x) \, dx = F(x) + C $
where $F(x)$ is the antiderivative of $f(x)$.
## Key Concepts
- **Indefinite Integral**: Represents all antiderivatives of a function.
- **Power Rule for Integration**: A method to integrate power functions.
- **Constant of Integration**: The arbitrary constant $C$ added to the antiderivative.
## Important Properties
1. Every indefinite integral includes an arbitrary constant $C$.
2. The power rule does not apply when $n = -1$ (for integrals involving $\frac{1}{x}$).
3. Indefinite integrals represent families of functions.
## Essential Formulas
- Power rule for indefinite integrals:
$ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for} \, n \neq -1 $
- For $n = -1$, the integral is:
$ \int \frac{1}{x} \, dx = \ln|x| + C $
## Core Examples
1. The indefinite integral of $x^3$:
$ \int x^3 \, dx = \frac{x^4}{4} + C $
2. The indefinite integral of $\frac{1}{x}$:
$ \int \frac{1}{x} \, dx = \ln|x| + C $
## Related Theorems/Rules
- **Linearity of Integration**:
$ \int [a f(x) + b g(x)] \, dx = a \int f(x) \, dx + b \int g(x) \, dx $
## Common Pitfalls
- Forgetting the constant of integration $C$.
- Misapplying the power rule when $n = -1$.
## Related Topics
- [[Derivative]]
- [[Indefinite Integrals]]
- [[Power Rule of Limits]]
- [[Logarithm]]
- [[Natural Logarithm]]
- [[Common Logarithm]]
- [[Antiderivatives]]
- [[Definite Integrals]]
## Quick Review Questions
1. What is the indefinite integral of $x^5$?
2. Why can't the power rule be used to find $\int \frac{1}{x} \, dx$?
***
![[Indefinite_Integrals_visualization]]