# [[Finding the Mean of a Normal Distribution]] (Mathematics > Statistics)
## Definition
Finding the mean of a normal distribution from a probability statement involves determining the unknown mean $\mu$ when given that a normally distributed random variable $X \sim N(\mu, \sigma^2)$ satisfies a probability condition. This is typically done by standardizing the variable using the $z$-score:
$
Z = \frac{X - \mu}{\sigma},
$
and then using the cumulative distribution function (CDF) of the standard normal distribution.
## Key Concepts
- **Normal Distribution:** A continuous probability distribution defined by its mean $\mu$ and variance $\sigma^2$.
- **Standardization:** Converting a normal variable to a standard normal variable $Z \sim N(0,1)$.
- **Cumulative Distribution Function (CDF):** The function $\Phi(z)$ that gives the probability $P(Z \leq z)$.
- **Inverse CDF:** Using $\Phi^{-1}(p)$ to find the $z$-value corresponding to a given probability $p$.
## Important Properties
1. **z-Score Transformation:** $Z = \frac{X - \mu}{\sigma}$ transforms $X \sim N(\mu, \sigma^2)$ to $Z \sim N(0,1)$.
2. **Probability Relationship:** For a given $x_0$, $P(X \leq x_0) = P\left(Z \leq \frac{x_0 - \mu}{\sigma}\right)$.
3. **Solving for $\mu$:** Rearranging the z-score formula allows one to solve for the unknown mean when $\sigma$, $x_0$, and the corresponding $z$-value are known.
## Essential Formulas
- **z-Score Formula:**
$
Z = \frac{X - \mu}{\sigma}.
$
- **Rearranged for $\mu$:**
$
\mu = X - \sigma Z.
$
- **Probability Statement:**
$
P(X \leq x_0) = \Phi\left(\frac{x_0 - \mu}{\sigma}\right).
$
## Core Examples
1. **Basic Example:**
Let $X \sim N(\mu, 2^2)$ and suppose $P(X \leq 2.1) = 0.7088$.
Standardize using:
$
P\left(Z \leq \frac{2.1 - \mu}{2}\right) = 0.7088.
$
From standard normal tables, $\Phi(0.55) \approx 0.7088$, so:
$
\frac{2.1 - \mu}{2} = 0.55.
$
Solving for $\mu$:
$
2.1 - \mu = 1.1 \quad \Longrightarrow \quad \mu = 1.
$
2. **Advanced Application:**
If a different probability is given, the same method applies. For instance, if $P(X \leq x_0) = p$ with known $\sigma$, find $z = \Phi^{-1}(p)$ and solve:
$
\frac{x_0 - \mu}{\sigma} = z \quad \Longrightarrow \quad \mu = x_0 - \sigma z.
$
## Related Theorems/Rules
- **Standard Normal Distribution:** The properties and CDF $\Phi(z)$ of the standard normal distribution are used.
- **Inverse Function Theorem:** Utilized when applying $\Phi^{-1}(p)$ to retrieve the corresponding $z$-score.
## Common Pitfalls
- **Confusing Variance and Standard Deviation:** Remember that $\sigma$ is the standard deviation, not $\sigma^2$.
- **Incorrect Standardization:** Failing to correctly subtract $\mu$ and divide by $\sigma$.
- **Using the Wrong z-Value:** Ensure that the $z$-value corresponds to the correct probability from the standard normal table.
- **Algebraic Errors:** Mistakes in rearranging the equation to solve for $\mu$.
## Related Topics
- [[Normal Distribution]]
- [[Standard Normal Distribution]]
- [[Cumulative Distribution Function]]
- [[Expected_Value_of_Discrete_Random_Variables]]
- [[Discrete_Random_Variables]]
- [[Estimating Mean and Variance of Grouped Data]]
- [[Geometric Distribution]]
- [[Addition Rule for Probability]]
- [[Multiplication Law for Probability]]
- [[Independent Events]]
- [[Conditional Probability]]
- [[Law of Total Probability]]
- [[Law of Total Probability with Conditional Probability]]
- [[Linear_Approximation]]
- [[Limit of a Sequence]]
- [[Residual]]
- [[Linear Regression]]
- **Standard Normal Distribution:** Understanding $Z \sim N(0,1)$ and its properties.
- **z-Score Calculation:** The process of standardizing a normal variable.
- **Parameter Estimation:** Techniques for estimating unknown parameters in probability distributions.
## Quick Review Questions
1. How do you transform a normally distributed variable $X \sim N(\mu, \sigma^2)$ into a standard normal variable $Z$?
2. Given $P(X \leq x_0) = p$ for a known $\sigma$, how do you solve for the unknown mean $\mu$?
***
![[Finding_the_Mean_of_a_Normal_Distribution_visualization]]