# [[Evenness of the Cosine Function]] (Mathematics > Trigonometry)
## Definition
A function $f(x)$ is **even** if it satisfies the property:
$f(-x) = f(x)$
This means that the graph of an even function is symmetric about the $y$-axis.
The cosine function, $\cos x$, is an even function. This means that for any $x$:
$\cos(-x) = \cos(x)$
## Key Concepts
- **Even function**: A function where $f(-x) = f(x)$.
- **Symmetry**: The graph of an even function is symmetric about the $y$-axis.
- **Cosine as even**: For all $x$, $\cos(-x) = \cos(x)$.
## Important Properties
1. **$y$-axis symmetry**: The cosine function is symmetric about the $y$-axis.
2. **Even identity**: $\cos(-x) = \cos(x)$ for all $x$.
3. **Periodicity**: The cosine function is periodic with period $2\pi$.
## Essential Formulas
- Even function property: $f(-x) = f(x)$.
- $\cos(-x) = \cos(x)$.
## Core Examples
1. For $x = \frac{\pi}{4}$:
- $\cos\left(-\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$.
2. For $x = -\frac{\pi}{3}$:
- $\cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$.
## Related Theorems/Rules
- **Even and odd function properties**: An even function satisfies $f(-x) = f(x)$, while an odd function satisfies $f(-x) = -f(x)$.
- **Symmetry**: Even functions exhibit symmetry about the $y$-axis.
## Common Pitfalls
- Confusing the even property of cosine with odd functions like sine, where $\sin(-x) = -\sin(x)$.
- Forgetting that cosine's symmetry is about the $y$-axis, not the origin.
## Related Topics
- [[Trigonometric Functions]]
- [[Unit Circle Overview]]
- [[Comparison of Sine and Cosine Functions]]
- [[Odd Functions]]
- [[Reflection of a Function Across the X-Axis]]
- [[General Transformations of Functions]]
- [[Periodic Functions]]
- [[Derivatives of Trigonometric Functions]]
- [[Pythagorean Identity]]
- [[Reflections of Functions]]
- [[Oddness of the Sine Function]]
- [[Symmetry of Trigonometric Functions]]
## Quick Review Questions
1. How do you prove that $\cos x$ is an even function?
2. What is $\cos(-\frac{\pi}{6})$ based on the evenness of cosine?
***
![[Evenness_of_the_Cosine_Function_visualization]]