# [[Dot Product of Perpendicular Vectors]] (Mathematics > Vector Algebra)
## Definition
Two nonzero vectors $\mathbf{a}$ and $\mathbf{b}$ are **perpendicular** (or orthogonal) if the angle $\theta$ between them is $90^\circ$. This relationship is often denoted by the symbol $\perp$ as:
$
\mathbf{a} \perp \mathbf{b}
$
In this case, their dot product is zero.
## Key Concept
- **Orthogonality and Dot Product**: For perpendicular vectors $\mathbf{a}$ and $\mathbf{b}$ with $\theta = 90^\circ$, we have:
$
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos 90^\circ = |\mathbf{a}| \cdot |\mathbf{b}| \cdot 0 = 0
$
## Important Properties
1. **Zero Dot Product Condition**: Two nonzero vectors are perpendicular if and only if their dot product is zero:
$
\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0
$
2. **Converse is True**: If $\mathbf{a} \cdot \mathbf{b} = 0$ and both vectors are nonzero, then $\mathbf{a}$ and $\mathbf{b}$ are perpendicular.
## Core Example
1. **Determine Orthogonality**: Given $\mathbf{a} = \langle 3, 4 \rangle$ and $\mathbf{b} = \langle -4, 3 \rangle$, check if $\mathbf{a}$ and $\mathbf{b}$ are perpendicular.
- Calculate $\mathbf{a} \cdot \mathbf{b}$:
$
\mathbf{a} \cdot \mathbf{b} = (3)(-4) + (4)(3) = -12 + 12 = 0
$
- Since $\mathbf{a} \cdot \mathbf{b} = 0$, $\mathbf{a}$ and $\mathbf{b}$ are perpendicular.
## Related Topics
- [[Odd Functions]]
- [[Rotation in a Plane]]
- [[Rotation by 270 Degrees]]
- [[Rotational Symmetry of Regular Polygons]]
- [[Area of a Triangle Using Trigonometry]]
- [[Reflection Across the Line y = -x]]
- [[Effect of Multiplying by \(i\)]]
- [[Rotation by Multiplying with \(i\)]]
- [[Perpendicular Distance from a Point to a Line]]
- [[Distance from a Point to a Line]]
- [[Perpendicular Slopes]]
- [[30-60-90 Triangle]]
- [[Dot Product]]
- [[Vector Magnitude]]
- [[Orthogonal Vectors]]
## Quick Review Questions
1. Why does the dot product of two perpendicular vectors equal zero?
2. Given vectors $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 3, -6, 2 \rangle$, determine if they are perpendicular.
***
![[Dot_Product_of_Perpendicular_Vectors_visualization]]