# [[Dot Product]] (Mathematics > Vector Algebra)
## Definition
The dot product (or scalar product) of two vectors $\mathbf{a}$ and $\mathbf{b}$ is a scalar quantity defined by:
$
\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \cdot |\mathbf{b}| \cdot \cos \theta,
$
where $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b}$ when their tails are positioned at the same point.
## Key Concepts
- **Scalar Output**: The result of the dot product is a scalar, not a vector.
- **Angle Dependency**: The dot product depends on the cosine of the angle between the two vectors.
- **Orthogonal Vectors**: If $\theta = 90^\circ$, then $\cos \theta = 0$, so $\mathbf{a} \cdot \mathbf{b} = 0$ for perpendicular vectors.
## Important Properties
1. **Commutative Property**: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.
2. **Distributive Property**: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
3. **Dot Product of a Vector with Itself**: $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$.
## Essential Formulas
- **Dot Product in Terms of Components**: If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then
$
\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.
$
## Core Examples
1. **Example with Angles**: Given $\mathbf{a}$ and $\mathbf{b}$ with $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$, and $\theta = 60^\circ$, calculate $\mathbf{a} \cdot \mathbf{b}$.
$
\mathbf{a} \cdot \mathbf{b} = 3 \cdot 4 \cdot \cos 60^\circ = 12 \cdot \frac{1}{2} = 6
$
2. **Component Form Example**: Let $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 4, -1, 2 \rangle$. Then,
$
\mathbf{a} \cdot \mathbf{b} = (1)(4) + (2)(-1) + (3)(2) = 4 - 2 + 6 = 8
$
## Related Theorems/Rules
- **Cauchy-Schwarz Inequality**: $|\mathbf{a} \cdot \mathbf{b}| \leq |\mathbf{a}| \cdot |\mathbf{b}|$, with equality if and only if $\mathbf{a}$ and $\mathbf{b}$ are linearly dependent.
## Common Pitfalls
- **Confusing Dot and Cross Products**: Remember, the dot product yields a scalar, while the cross product results in a vector.
- **Misinterpreting the Angle**: Ensure $\theta$ is the angle between the vectors, not an arbitrary angle.
## Related Topics
- [[One-to-One Functions]]
- [[Translation]]
- [[Rotation in a Plane]]
- [[Rotation by 270 Degrees]]
- [[General Transformations of Functions]]
- [[Perpendicular Distance from a Point to a Line]]
- [[Distance from a Point to a Line]]
- [[Perpendicular Slopes]]
- [[30-60-90 Triangle]]
- [[Cross Product]]
- [[Vector Magnitude]]
- [[Cauchy-Schwarz Inequality]]
## Quick Review Questions
1. What is the dot product of two perpendicular vectors, and why?
2. Calculate the dot product of $\mathbf{a} = \langle 3, 0, -2 \rangle$ and $\mathbf{b} = \langle 1, 4, 2 \rangle$.
***
![[Dot_Product_visualization]]