# [[Determinant of a 3x3 Matrix]] (Mathematics > Linear Algebra)
## Definition
The **determinant of a $3 \times 3$ matrix** $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ is a scalar value that provides information about the matrix's invertibility, volume scaling factor, and orientation in space. The determinant of $A$ is given by:
$
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg).
$
## Key Concepts
- **Minors and Cofactors**: The terms $(ei - fh)$, $(di - fg)$, and $(dh - eg)$ are minors of $A$ associated with the elements $a$, $b$, and $c$, respectively.
- **Sign Pattern**: The determinant expansion uses alternating signs ($+, -, +$) for the cofactors.
- **Invertibility**: $A$ is invertible if and only if $\det(A) \neq 0$.
## Important Properties
1. **Linear in Rows/Columns**: The determinant is a linear function of each row and column.
2. **Swapping Rows/Columns**: Swapping two rows or columns changes the sign of the determinant.
3. **Row or Column of Zeros**: If any row or column of $A$ is all zeros, then $\det(A) = 0$.
## Essential Formulas
- **Determinant Formula for $3 \times 3$ Matrix**:
$
\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg).
$
## Core Examples
1. **Example Calculation**:
Given $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & -1 & 5 \\ 7 & 2 & 0 \end{bmatrix}$, calculate $\det(A)$:
$
\det(A) = 2((-1)(0) - (5)(2)) - 3((4)(0) - (5)(7)) + 1((4)(2) - (-1)(7))
$
$
= 2(0 - 10) - 3(0 - 35) + 1(8 + 7) = -20 + 105 + 15 = 100.
$
2. **Geometric Interpretation**:
The absolute value $|\det(A)|$ represents the volume scaling factor for transformations in $\mathbb{R}^3$ by matrix $A$.
## Related Theorems/Rules
- **Cofactor Expansion**: The determinant can be expanded along any row or column using minors and cofactors.
- **Properties of Determinants**: For example, $\det(AB) = \det(A) \det(B)$ for square matrices $A$ and $B$.
## Common Pitfalls
- Forgetting the alternating signs in the cofactor expansion.
- Calculating minors incorrectly by omitting or misidentifying elements in submatrices.
## Related Topics
- [[Matrices and Their Dimensions]]
- [[Special Types of Matrices]]
- [[Minor of a Matrix Element]]
- [[Matrix Multiplication]]
- [[Matrix-Vector Multiplication]]
- [[Linear Transformation]]
- [[Transpose of a Matrix]]
- [[Scalar Multiplication of Matrices]]
- [[Linear Combinations of Vectors]]
- [[Area of a Parallelogram Using Determinants]]
- [[Cofactor Expansion]]
- [[Matrix Inverses and Determinants]]
- [[Properties of Determinants]]
## Quick Review Questions
1. Calculate the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 1 & 0 & 6 \end{bmatrix}$.
2. Why does a $3 \times 3$ matrix with a row of zeros have a determinant of zero?
***
![[Determinant_of_a_3x3_Matrix_visualization]]