# [[Cofactor Expansion and Matrix Inverse]] (Mathematics > Linear Algebra)
## Definition
The **cofactor** of an element $a_{ij}$ in a square matrix $A$ is defined as:
$C_{ij} = (-1)^{i+j} \det(M_{ij}),$
where $M_{ij}$ is the minor of $a_{ij}$ (the determinant of the submatrix obtained by deleting the $i$-th row and $j$-th column of $A$).
The **inverse** of a matrix $A$ is given by:
$A^{-1} = \frac{1}{\det(A)} C^T,$
where $C^T$ is the transpose of the cofactor matrix of $A$.
## Key Concepts
- **Minor**: The determinant of a smaller matrix obtained by removing a row and a column from $A$.
- **Cofactor**: Includes the sign factor $(-1)^{i+j}$ to account for the position in $A$.
- **Cofactor Matrix**: A matrix where each element is the cofactor $C_{ij}$ of the corresponding element $a_{ij}$ in $A$.
- **Adjugate**: The transpose of the cofactor matrix.
## Important Properties
1. The cofactor expansion can compute the determinant:
$\det(A) = \sum_{j=1}^n a_{ij} C_{ij}, \quad \text{for any row } i.$
2. The inverse exists only if $\det(A) \neq 0$.
3. The inverse formula:
$A^{-1} = \frac{1}{\det(A)} \text{adj}(A),$
where $\text{adj}(A)$ is the adjugate matrix.
## Essential Steps to Find $A^{-1}$
1. Compute $\det(A)$:
- Use cofactor expansion along any row or column.
- If $\det(A) = 0$, $A$ is not invertible.
2. Calculate cofactors $C_{ij}$ for each element of $A$.
3. Form the cofactor matrix.
4. Transpose the cofactor matrix to get $\text{adj}(A)$.
5. Use the formula:
$A^{-1} = \frac{1}{\det(A)} \text{adj}(A).$
## Core Examples
1. **Example 1**:
Find $a'_{31}$ in $A^{-1}$ for:
$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}.$
- Compute $C_{13}$:
$C_{13} = (-1)^{1+3} \det\begin{bmatrix} 0 & 1 \\ 5 & 6 \end{bmatrix} = (-1)^4 (0 \cdot 6 - 1 \cdot 5) = -5.$
- Compute $\det(A)$:
$\det(A) = 1\cdot(1\cdot0 - 4\cdot6) - 2\cdot(0\cdot0 - 4\cdot5) + 3\cdot(0\cdot6 - 1\cdot5) = -24 + 40 - 15 = 1.$
- Entry $a'_{31}$ in $A^{-1}$:
$a'_{31} = \frac{1}{\det(A)}C_{13} = \frac{1}{1}(-5) = -5.$
2. **Example 2**:
For $A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$:
- Compute $\det(A) = 2\cdot3 - 1\cdot5 = 6 - 5 = 1.$
- Compute cofactors:
$C_{11} = 3, \, C_{12} = -5, \, C_{21} = -1, \, C_{22} = 2.$
- Adjugate matrix:
$\text{adj}(A) = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}.$
- Inverse:
$A^{-1} = \frac{1}{\det(A)}\text{adj}(A) = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}.$
## Related Theorems/Rules
- [[Determinants and Invertibility]]
- [[Row Reduction for Inverses]]
## Common Pitfalls
- Mistaking minors for cofactors (forgetting $(-1)^{i+j}$).
- Incorrectly calculating the determinant or minor.
- Using the formula without verifying $\det(A) \neq 0$.
## Related Topics
- [[Determinant of a 3x3 Matrix]]
- [[Calculating the Inverse of a 3x3 Matrix Using the Cofactor Method]]
- [[Minor of a Matrix Element]]
- [[Matrix Multiplication]]
- [[Singular Matrices]]
- [[Matrix Inversion]]
- [[Special Types of Matrices]]
- [[Inverse of a 2×2 Matrix]]
- [[Multiplicative Inverse]]
- [[Identity Matrix]]
- [[Determinants and Cofactor Expansion]]
- [[Matrix Inverses]]
- [[Adjugate Matrix]]
## Quick Review Questions
1. Compute the cofactor $C_{22}$ for $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$.
2. What is the formula for $A^{-1}$ in terms of $\det(A)$ and the adjugate matrix?
3. Verify the inverse of $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ using cofactors.
***
![[Cofactor_Expansion_and_Matrix_Inverse_visualization]]