# [[Amplitude-Phase Form of Sine]] (Mathematics > Trigonometry) ## Definition The amplitude-phase form of a sine function expresses a trigonometric expression involving both sine and cosine terms as a single sine function with an amplitude and phase shift. Specifically, any expression of the form: $ a \sin x \pm b \cos x $ can be rewritten as: $ R \sin(x \pm \phi) $ where: - $R$ is the **amplitude** of the function. - $\phi$ is the **phase shift** of the function. Here, $R > 0$ and $\phi \in \left(0, \frac{\pi}{2}\right)$. ## Key Concepts - **Amplitude** $R$: Represents the peak value of the trigonometric expression. - **Phase Shift** $\phi$: The angle by which the function is shifted horizontally. - **Trigonometric Transformation**: Any linear combination of sine and cosine functions with the same argument can be expressed in amplitude-phase form. - **Angular Frequency** $x$: Represents the variable in terms of which the phase and amplitude are considered. ## Important Properties 1. The amplitude $R$ is found as $R = \sqrt{a^2 + b^2}$. 2. The phase shift $\phi$ is determined by $\tan \phi = \frac{b}{a}$. 3. The expression $a \sin x + b \cos x$ retains the same frequency as $\sin x$ and $\cos x$. ## Essential Formulas - **Amplitude**: $ R = \sqrt{a^2 + b^2} $ - **Phase Shift**: $ \phi = \tan^{-1} \left(\frac{b}{a}\right) $ - **Amplitude-Phase Form**: $ a \sin x \pm b \cos x = R \sin(x \pm \phi) $ ## Core Examples 1. **Basic Example**: Rewrite $3 \sin x + 4 \cos x$ in amplitude-phase form. - Calculate $R = \sqrt{3^2 + 4^2} = 5$. - Calculate $\phi = \tan^{-1} \left(\frac{4}{3}\right)$. - Therefore, $3 \sin x + 4 \cos x = 5 \sin(x + \phi)$ where $\phi = \tan^{-1}\left(\frac{4}{3}\right)$. 2. **Advanced Example**: Rewrite $5 \sin x - 12 \cos x$ in amplitude-phase form. - Calculate $R = \sqrt{5^2 + (-12)^2} = 13$. - Calculate $\phi = \tan^{-1} \left(\frac{-12}{5}\right)$. - Thus, $5 \sin x - 12 \cos x = 13 \sin(x - \phi)$, with $\phi = \tan^{-1}\left(\frac{-12}{5}\right)$. ## Related Theorems/Rules - **Pythagorean Identity**: Used in calculating $R = \sqrt{a^2 + b^2}$. - **Tangent Inverse Function**: Used for phase calculation, $\phi = \tan^{-1} \left(\frac{b}{a}\right)$. ## Common Pitfalls - Confusing $a$ and $b$ in the phase calculation formula $\phi = \tan^{-1} \left(\frac{b}{a}\right)$. - Misidentifying the amplitude $R$ as $a + b$ instead of $\sqrt{a^2 + b^2}$. ## Related Topics - [[Sine Function]] - [[Cosine Function]] - [[Transformed Sine and Cosine Functions]] - [[Amplitude]] - [[Phase Shift]] - [[Horizontal Translations of Functions]] - [[Unit Circle Overview]] - [[Comparison of Sine and Cosine Functions]] - [[trigonometric_graphs]] - [[Horizontal Scaling of the Sine Function]] - [[Oddness of the Sine Function]] - [[Evenness of the Cosine Function]] - [[Sum and Difference Formulas for Sine]] - [[Sum and Difference Formulas for Cosine]] - [[Double-Angle Formula for Sine]] - [[Double-Angle Formula for Cosine]] - [[Trigonometric Identities]] - [[Harmonic Oscillations]] - [[Vector Representation of Complex Numbers]] ## Quick Review Questions 1. What is the formula to find the amplitude $R$ in the expression $a \sin x + b \cos x$? 2. How can you determine the phase shift $\phi$ for the expression $a \sin x + b \cos x$? *** ![[Amplitude-Phase_Form_of_Sine_visualization]]