# [[Amplitude-Phase Form of Cosine]] (Mathematics > Trigonometry)
## Definition
The amplitude-phase form of a cosine function is used to express a trigonometric expression involving both cosine and sine terms as a single cosine function with an amplitude and phase shift. Specifically, any expression of the form:
$
a \cos x \pm b \sin x
$
can be rewritten as:
$
R \cos(x \mp \phi)
$
where:
- $R$ is the **amplitude** of the function.
- $\phi$ is the **phase shift** of the function.
Here, $R > 0$ and $\phi \in \left(0, \frac{\pi}{2}\right)$.
## Key Concepts
- **Amplitude** $R$: The maximum value of the trigonometric expression.
- **Phase Shift** $\phi$: The horizontal shift in the cosine function.
- **Trigonometric Transformation**: A combination of cosine and sine terms with the same argument can be expressed in amplitude-phase form using cosine.
- **Angular Frequency** $x$: The argument of the trigonometric function.
## Important Properties
1. The amplitude $R$ is given by $R = \sqrt{a^2 + b^2}$.
2. The phase shift $\phi$ is determined by $\tan \phi = \frac{b}{a}$.
3. Expressions $a \cos x + b \sin x$ and $a \cos x - b \sin x$ both retain the same frequency as $\cos x$ and $\sin x$.
## Essential Formulas
- **Amplitude**:
$
R = \sqrt{a^2 + b^2}
$
- **Phase Shift**:
$
\phi = \tan^{-1} \left(\frac{b}{a}\right)
$
- **Amplitude-Phase Form (Cosine)**:
$
a \cos x \pm b \sin x = R \cos(x \mp \phi)
$
## Core Examples
1. **Basic Example**: Rewrite $3 \cos x + 4 \sin x$ in amplitude-phase form.
- Calculate $R = \sqrt{3^2 + 4^2} = 5$.
- Calculate $\phi = \tan^{-1} \left(\frac{4}{3}\right)$.
- Therefore, $3 \cos x + 4 \sin x = 5 \cos(x - \phi)$ where $\phi = \tan^{-1}\left(\frac{4}{3}\right)$.
2. **Advanced Example**: Rewrite $4 \sin x + \cos x$ in amplitude-phase form.
- Calculate $R = \sqrt{1^2 + 4^2} = \sqrt{17}$.
- Calculate $\phi = \tan^{-1} \left(\frac{4}{1}\right)$.
- Thus, $4 \sin x + \cos x = \sqrt{17} \cos(x - \phi)$, with $\phi = \tan^{-1}\left(4\right)$.
## Related Theorems/Rules
- **Pythagorean Identity**: Supports the calculation of $R = \sqrt{a^2 + b^2}$.
- **Tangent Inverse Function**: Used for determining the phase shift $\phi$ as $\tan^{-1} \left(\frac{b}{a}\right)$.
## Common Pitfalls
- Mixing up $a$ and $b$ in the phase calculation formula $\phi = \tan^{-1} \left(\frac{b}{a}\right)$.
- Confusing the form with sine's amplitude-phase form, which uses $R \sin(x \pm \phi)$.
## Related Topics
- [[Amplitude]]
- [[Horizontal Translations of Functions]]
- [[General Transformations of Functions]]
- [[Trigonometric Graphs]]
- [[Comparison of Sine and Cosine Functions]]
- [[Derivatives of Trigonometric Functions]]
- [[Horizontal Scaling of the Sine Function]]
- [[Transformed Sine and Cosine Functions]]
- [[Sum and Difference Formulas for Sine]]
- [[Sum and Difference Formulas for Cosine]]
- [[Double-Angle Formula for Sine]]
- [[Double-Angle Formula for Cosine]]
- [[Amplitude-Phase Form of Sine]]
- [[Trigonometric Identities]]
- [[Polar Form of Complex Numbers]]
## Quick Review Questions
1. How do you calculate the amplitude $R$ for $a \cos x + b \sin x$?
2. What is the phase shift $\phi$ in terms of $a$ and $b$?
***
![[Amplitude-Phase_Form_of_Cosine_visualization]]