# Squeeze Theorem
**The limit of a function at a point is equal to the limits, if they are equal, of an upper and lower bounding function.**
![[SqueezeTheorem.svg|600]]
*The function $x^{2}\sin\left(\frac{1}{x}\right)$ being squeezed between $x^{2}$ and $-x^{2}$ at $x=0$; the value of $x^{2}\sin\left(\frac{1}{x}\right)$ at $x=0$ can then be inferred from the value of the other two functions*
> [!NOTE] Squeeze Theorem
> Let $f$, $g$, and $h$ be functions defined on an interval $I$ containing the point $a$. Suppose that for every $x\neq a$ on the interval, $g(x)\le f(x)\le h(x)$. If the limits of $g(x)$ and $h(x)$ exist and
> $\lim_{x\rightarrow a}g(x)=\lim_{x\rightarrow a}h(x)=L$
> then, by the *squeeze theorem*,
> $\lim_{x\rightarrow a}f(x)=L$
> [!NOTE]- Example
> Suppose the limit
> $\lim_{x\rightarrow 0}x^{2}\sin\left(\frac{1}{x}\right)$
> is to be determined. The limit cannot be determined directly because the limit $\lim_{x\rightarrow 0}\sin\left(\frac{1}{x}\right)$ does not exist.
>
> By the definition of the [[Trigonometric Functions|sine function]],
> $-1\le\sin\left(\frac{1}{x}\right)\le 1$
> If the inequality is multiplied through by $x^{2}$, then
> $-x^{2}\le x^{2}\sin\left(\frac{1}{x}\right)\le x^{2}$
> As $-x^{2}$ and $x^{2}$ approach zero as $x$ approaches zero, it must also be true that
> $\lim_{x\rightarrow 0}x^{2}\sin\left(\frac{1}{x}\right)=0$