# Reciprocal Rule
The *reciprocal rule* is a formula for the [[derivative]] of the *reciprocal of a function*.
>[!Example] Reciprocal Rule
> If $\displaystyle g(x)=\frac{1}{f(x)}$, then
> $g'(x)=-\frac{f'(x)}{f(x)^{2}}$
> for *non-zero* $f(x)$.
## Proof
A proof of the reciprocal rule uses the limit definition of the derivative.
Let $\displaystyle g(x)=\frac{1}{f(x)}$ and $f$ be differentiable at $x$.
$\begin{align*}
g'(x)&=\lim_{h\rightarrow 0}\frac{g(x+h)-g(x)}{h} \\
&=\lim_{h\rightarrow 0}\frac{\displaystyle\frac{1}{f(x+h)}-\frac{1}{f(x)}}{h} \\
&=\lim_{h\rightarrow 0}\frac{f(x)-f(x+h)}{h\;f(x)f(x+h)} \\
&=\lim_{h\rightarrow 0}-\frac{f(x+h)-f(x)}{h}\frac{1}{f(x)f(x+h)} \\
&=\lim_{h\rightarrow 0}-\frac{f(x+h)-f(x)}{h}\lim_{h\rightarrow 0}\frac{1}{f(x)f(x+h)} \\
&=-f'(x)\frac{1}{f(x)^{2}} \\
\therefore g'(x)&=-\frac{f'(x)}{f(x)^{2}}
\end{align*}$