# Interconnection of Two-Port Networks It is common to find circuits where several [[Two-Port Network|two-port networks]] are interconnected in *series*, *parallel*, or are *cascaded* together. ## Series connection In *series*, two two-port networks share input currents and their input voltages add. $\begin{align*} \mathbf{V}_{1}&=\mathbf{V}_{1a}+\mathbf{V}_{1b} \\ \mathbf{V}_{2}&=\mathbf{V}_{2a}+\mathbf{V}_{2b} \end{align*}$ The *Z-parameter* matrix for the combined network is the sum of the individual Z-parameter matrices of each network. $\mathbf{Z}=\mathbf{Z}_A+\mathbf{Z}_B$ ![[TwoPortNetworkSeries.svg|500]] ## Parallel connection In *parallel*, the networks share port voltages and the total input current is equal to the sum of the individual input currents. $\begin{align*} \mathbf{I}_{1}&=\mathbf{I}_{1a}+\mathbf{I}_{1b} \\ \mathbf{I}_{2}&=\mathbf{I}_{2a}+\mathbf{I}_{2b} \end{align*}$ $\begin{align*} \mathbf{V}_{1}&=\mathbf{V}_{1a}=\mathbf{V}_{1b} \\\mathbf{V}_{2}&=\mathbf{V}_{2a}=\mathbf{V}_{2b} \end{align*}$ The *Y-parameter* matrix for the combined network is the sum of the individual Y-parameter matrices of each network. $\mathbf{Y}=\mathbf{Y}_{A}+\mathbf{Y}_{B}$ ![[TwoPortNetworkParallel.svg]] ## Cascading networks When networks are *cascaded*, the outputs on one network becomes the input of the next one. The *transmission parameters* of the combined networks equals to the *matrix multiplication* of the individual transmission matrices of each network. $\mathbf{T}=\mathbf{T}_{A}\mathbf{T}_{B}$ ![[TwoPortNetworkCascaded.svg]]