# Flip-Flop Input Equation
**A Boolean equation describing the inputs of a [[flip-flop]].**
Flip-flop input equations are derived from [[State Table|state tables]] and [[Excitation Table|excitation tables]] and used to form the output combinational circuit.
> [!Example]
> For a [[Flip-Flop#T flip-flip|T flip-flop]] circuit, the extended state table derived from an excitation table is:
>
>| Present<br>state | | Inputs | | Next<br>state | | Flip-flop<br>inputs | |
|:--------------------:|:---:|:--------:|:--------:|:-----------------:|:--------:|:-----------------------:|:-----:|
| $A$ | $B$ | $S$ | $F$ | $A(t+1)$ | $B(t+1)$ | $T_A$ | $T_B$ |
| $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ |
| $0$ | $0$ | $\times$ | $1$ | $0$ | $1$ | $0$ | $1$ |
| $0$ | $0$ | $1$ | $\times$ | $1$ | $0$ | $1$ | $0$ |
| | | | | | | | |
| $0$ | $1$ | $0$ | $0$ | $0$ | $1$ | $0$ | $0$ |
| $0$ | $1$ | $\times$ | $1$ | $1$ | $0$ | $1$ | $1$ |
| $0$ | $1$ | $1$ | $\times$ | $1$ | $1$ | $1$ | $0$ |
| | | | | | | | |
| $1$ | $1$ | $0$ | $0$ | $1$ | $1$ | $0$ | $0$ |
| $1$ | $1$ | $\times$ | $1$ | $0$ | $0$ | $1$ | $1$ |
| $1$ | $1$ | $1$ | $\times$ | $0$ | $1$ | $1$ | $0$ |
| | | | | | | | |
| $1$ | $0$ | $0$ | $0$ | $1$ | $0$ | $0$ | $0$ |
| $1$ | $0$ | $\times$ | $1$ | $1$ | $1$ | $0$ | $1$ |
| $1$ | $0$ | $1$ | $\times$ | $0$ | $0$ | $1$ | $0$ |
>
> Note that for this particular circuit, $S=F=1$ is not a possible combination. To derive the flip-flop input equations, [[Karnaugh Map|K-maps]] can be used.
>
> ![[LightControllerTAKMap.svg|400]]
> ***
> ![[LightControllerTBKMap.svg|400]]
>
> Thus, the flip-flop input equations are
>$\begin{align*}
T_{A}&=BF+S \\
T_{B}&=F \\
\end{align*}$