# Euler's Formula
**The fundamental relationship between the [[trigonometric functions]] and the [[Exponential Function#Complex exponential function|complex exponential function]].**
> [!NOTE] Euler's Formula
> *Euler's formula* states that for any real number $x$
> $e^{i\theta}=\cos \theta+i\sin \theta$
> - $e$ - [[e|Euler's number]]
> - $i$ - the [[Complex Number|imaginary unit]]
Euler's formula is used to derive [[De Moivre's Formula|de Moivre's formula]].