# Convolution **An operation on two [[Function|functions]] that produces a third function that expresses how the graph of one is affected by the other.** ![[Convolution.svg]] > [!Convolution] > The **convolution** of $f$ and $g$ is defined as > $\begin{align} > (f*g)(t)&=\int_{-\infty}^{\infty}f(\tau)g(t-\tau)\;d\tau \\ > &=\int_{-\infty}^{\infty}f(t-\tau)g(\tau)\;d\tau > \end{align}$ > [^1] In words, the formula can be described as the *area* under the function $f(\tau)$ *weighted* by the function $g(-\tau)$ and *shifted* by amount $t$ or vice versa. > If the functions are *supported* only on $[0,\infty)$, then the integration limits can be changed. > $(f*g)(t)=\int_{0}^{t}f(\tau)g(t-\tau)\;d\tau$ Visually, the graph of the function $g$ is *reversed* and *slid* along the $\tau$-axis by varying $t$ from $-\infty$ to $\infty$. ## Properties | Property | Description | |:--------------------------------:|:----------------------------------------------:| | $f*g=g*f$ | Commutative | | $f*(g*h)=(f*g)*h$ | Associative | | $a(f*g)=(af)*g$ | Associative under scalar multiplication | | $f*(g+h)=(f*g)+(f*h)$ | Distributive | | $\overline{f*g}=\bar{f}*\bar{g}$ | [[Complex Conjugate\|Complex conjugation]] | ### Singularity functions > [!Example]+ Unit impulse function > The convolution of a function with the [[Dirac delta function]] returns the function. > $f(t)*\delta(t)=f(t)$ > $f(t)*\delta(t-t_{0})=f(t-t_{0})$ > [!Example]+ Derivative of the unit impulse function > The convolution of a function with the [[derivative]] of the unit impulse function returns the derivative of the function. > $f(t)*\delta'(t)=f'(t)$ > [!Example]+ Unit step function > The convolution of a function with the [[unit step function]] gives an integral. > $f(t)*u(t)=\int_{-\infty}^{t}f(\tau)\;d\tau$ ## Examples Note that through commutation the equivalent integral used in the examples is $(f*g)(t)=\int_{-\infty}^{\infty}f(t-\tau)g(\tau)\;d\tau$ > [!Three regions]+ There are three regions of analysis in the convolution of $e^{-t}$ over the interval $t>0$ and a two high, one second pulse. > ![[Convolution3RegionsFunctions.svg]] > The *starting point* chosen is arbitrary but allows $f(t-\tau)$ to lie initially completely to the left of $g(\tau)$. > *** For $t<0$, there is *no overlap* of the functions, thus >$(f*g)(t)=0,\qquad t<0$ > ![[Convolution3Regions1.svg]] >*** For $0<t<1$, >$\begin{align*} (f*g)(t)&=\int_{-\infty}^{\infty}f(t-\tau)g(\tau)\;d\tau \\ &=\int_{0}^{t}2e^{-(t-\tau)}\;d\tau \\ &=2(1-e^{-t}),\qquad 0<t<1 \end{align*}$ Note that the integral here is simplified from the interval $-\infty<\tau<\infty$ to include *only* the region where there is *overlap*. ![[Convolution3Regions2.svg]] >*** For $t>1$, >$\begin{align*} (f*g)(t)&=\int_{0}^{1}2e^{-(t-\tau)}\;d\tau \\ &=2e^{-t}(e-1),\qquad t>1 \end{align*}$ Again, the integral here has been simplified by limiting the interval to only the region of overlap. ![[Convolution3Regions3.svg]] Thus, >$(f*g)(t)=\begin{cases} 0, & t<0 \\ 2(1-e^{-t}), & 0<t<1 \\ 2e^{-t}(e-1), & t>1 \end{cases}$ > [!Five regions]+ There are five regions of analysis in the convolution of the following $f(t)$ and $g(t)$. > ![[Convolution5RegionsFunctions.svg]] >****** For $0<t<1$, there is *no overlap* of the functions, thus >$(f*g)(t)=0,\qquad 0<t<1$ ![[Convolution5Regions1.svg]] >*** For $1<t<2$, the functions overlap between $1$ and $t$. >$(f*g)(t)=\int_{1}^{t}(2)(1)\;d\tau=2t-2,\qquad 1<t<2$ ![[Convolution5Regions2.svg]] >*** For $2<t<3$, the functions completely overlap between $(t-1)$ and $t$. >$(f*g)(t)=\int_{t-1}^{t}(2)(1)\;d\tau=2,\qquad 2<t<3$ ![[Convolution5Regions3.svg]] >*** For $3<t<4$, the functions overlap between $(t-1)$ and $3$. >$(f*g)(t)=\int_{t-1}^{3}(2)(1)\;d\tau=8-2t,\qquad 3<t<4$ ![[Convolution5Regions4.svg]] >*** For $t>4$, $f(t-\tau)$ is slid completely to the right of $g(\tau)$ and thus there is once again *no overlap*. >$(f*g)(t)=0,\qquad t>4$ >*** Thus, >$(f*g)(t)=\begin{cases} 0, &0\le t\le1 \\ 2t-2, &1\le t\le 2 \\ 2, &2\le t\le 3 \\ 8-2t, &3\le t\le 4 \\ 0, &t\ge 4 \end{cases}$ [^1]: Note that the *variable of integration* is the *dummy variable* $\tau$ while $t$ is used to introduce an offset.