### Research Interests and Research Metrics ###
Convex Analysis, Monotone Operator Theory, Projection Algorithms, Convex Optimization
+ [orcid](https://orcid.org/0000-0002-4155-9930)
+ [Semantic Scholar](https://www.semanticscholar.org/author/Heinz-H.-Bauschke/1713257)
+ [Google Scholar](https://scholar.google.ca/citations?user=UOm9p_AAAAAJ)
+ [Research.com](https://research.com/u/heinz-h-bauschke)
+ [exaly.com](https://exaly.com/author/4385706/heinz-h-bauschke/rankings)
+ [most cited mathematicians](https://mathcitations.github.io)
### Books and Graduate Theses ###
- H.H. Bauschke and W.M. Moursi: _An Introduction to Convexity, Optimization, and Algorithms_, SIAM 2024, https://epubs.siam.org/doi/10.1137/1.9781611977806
- H.H. Bauschke and P.L. Combettes: _Convex Analysis and Monotone Operator Theory in Hilbert Spaces_, second edition, Springer 2017. [https://doi.org/10.1007/978-3-319-48311-5](https://doi.org/10.1007/978-3-319-48311-5)
- H.H. Bauschke, R.S. Burachik, P.L. Combettes, V. Elser, D.R. Luke, and H. Wolkowicz (editors): _Fixed-Point Algorithms for Inverse Problems in Science and Engineering_, Springer, 2011. [https://doi.org/10.1007/978-1-4419-9569-8](https://doi.org/10.1007/978-1-4419-9569-8)
- D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Théra, J.D. Vanderwerff, and H. Wolkowicz (editors): _Computational and Analytical Mathematics_, Springer, 2013. [https://doi.org/10.1007/978-1-4614-7621-4](https://doi.org/10.1007/978-1-4614-7621-4)
- H.H. Bauschke, R.S. Burachik, and D.R. Luke (editors): _Splitting Algorithms, Monotone Operator Theory, and Applications_, Springer, 2019. [https://doi.org/10.1007/978-3-030-25939-6](https://doi.org/10.1007/978-3-030-25939-6)
- H.H. Bauschke and P.L. Combettes: _Convex Analysis and Monotone Operator Theory in Hilbert Spaces_, first edition, Springer 2011. [https://doi.org/10.1007/978-1-4419-9467-7](https://doi.org/10.1007/978-1-4419-9467-7)
- H.H. Bauschke: _Projection Algorithms and Monotone Operators_, PhD thesis, Mathematics, Simon Fraser University, 1996. [http://summit.sfu.ca/item/7015](http://summit.sfu.ca/item/7015)
- H.H. Bauschke: Normale Strukturen und ihre Charakterisierung durch Fixpunkteigenschaften, Diplomarbeit, Goethe University, Summer 1989.
### 152 Journal Articles ###
_Note:_ [My arxiv preprint versions](https://arxiv.org/search/advanced?advanced=&terms-0-operator=AND&terms-0-term=Bauschke&terms-0-field=author&classification-physics_archives=all&classification-include_cross_list=include&date-filter_by=all_dates&date-year=&date-from_date=&date-to_date=&date-date_type=submitted_date&abstracts=show&size=200&order=-announced_date_first) might be early preprints and thus might differ substantially from published versions.
- H.H. Bauschke, T. Bendit, and W.M. Moursi: How averaged is the composition of two linear projections? _Numerical Functional Analysis and Optimization_ 44, pp. 1652-1668, 2023. https://doi.org/10.1080/01630563.2023.2270308 and https://arxiv.org/abs/2303.13738 (accepted August 8, 2023). [152.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/152.pdf)
- H.H. Bauschke, T. Bendit, and H. Wang: The homogenization cone: polar cone and projection. _Set-Valued and Variational Analysis_ 31, article 29, 2023. https://arxiv.org/abs/2206.02694 and https://doi.org/10.1007/s11228-023-00687-y(accepted June 15, 2023). [151.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/151.pdf)
- H.H. Bauschke, S. Singh, and X. Wang: On Carlier's inequality. _Journal of Convex Analysis_ 30(2), pp. 499-514, 2023. https://www.heldermann.de/JCA/JCA30/JCA302/jca30029.htm and https://arxiv.org/abs/2206.14872 (accepted February 21, 2023) [150.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/150.pdf)
- H.H. Bauschke, S. Singh, and X. Wang: The splitting algorithms by Ryu, by Malitsky-Tam, and by Campoy applied to normal cones of linear subspaces converge strongly to the projection onto the intersection. _SIAM Journal on Optimization_ 33(2), pp. 739-765, 2023. https://arxiv.org/abs/2203.03832 and https://doi.org/10.1137/22M1483165 (accepted November 28, 2022) [149.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/149.pdf)
- H.H. Bauschke and W.M. Moursi: On the Douglas–Rachford algorithm for solving possibly inconsistent optimization problems. To appear in _Mathematics of Operations Research_ in 2023. https://arxiv.org/abs/2106.11547 and https://doi.org/10.1287/moor.2022.1347 (accepted October 7, 2022) [148.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/148.pdf)
- H.H.Bauschke, M. Krishan Lal, and X. Wang: Projecting onto hyperbolas or bilinear constraint sets in Hilbert space, _Journal of Global Optimization_ 86, pp. 25-36, 2023. https://arxiv.org/abs/2112.02181 and https://doi.org/10.1007/s10898-022-01247-8 (accepted October 3, 2022) [147.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/147.pdf)
- H.H.Bauschke, M. Krishan Lal, and X. Wang: Projecting onto rectangular hyperbolic paraboloids in Hilbert space, _Applied Set-Valued Analysis and Optimization_ 5(2), pp. 163-180, 2023. https://doi.org/10.23952/asvao.5.2023.2.04 (accepted September 22, 2022) [146.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/146.pdf)
- H.H. Bauschke, M. Krishan Lal, and X. Wang: Directional asymptotics of Fejér monotone sequences. _Optimization Letters_ 17, pp. 531–544, 2023. https://arxiv.org/abs/2106.15037 and https://doi.org/10.1007/s11590-022-01896-4 (accepted May 19, 2022) [145.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/145.pdf)
- H.H. Bauschke and P.A.V. DiBerardino: Minimal angle spread in the probability simplex with respect to the uniform distribution. _Journal of Nonsmooth Analysis and Optimization_ 3 https://doi.org/10.46298/jnsao-2022-7492 (accepted April 22, 2022) [144.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/144.pdf)
- H.H. Bauschke and X. Wang: Roots of the identity operator and proximal mappings: (classical and phantom) cycles and gap vectors. _Proceedings of the AMS_ 150, pp. 5383-5395, 2022. https://doi.org/10.1090/proc/16049 and https://arxiv.org/abs/2201.05189 (accepted February 21, 2022) [143.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/143.pdf)
- X. Wang and H.H. Bauschke: The Bregman proximal average. _SIAM Journal on Optimization_ 32(2), pp. 1379-1401, 2022. [https://doi.org/10.1137/21M1442474](https://doi.org/10.1137/21M1442474) and https://arxiv.org/abs/2108.11440 and (accepted February 21, 2022) [142.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/142.pdf)
- H.H. Bauschke, M. Krishan Lal, and X. Wang: The projection onto the cross. _Set-Valued and Variational Analysis_ 30, pp. 997-1009, 2022. https://arxiv.org/abs/2108.04382 and https://doi.org/10.1007/s11228-022-00630-7 (accepted January 28, 2022) [141.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/141.pdf)
- H.H. Bauschke, S. Singh, and X. Wang: Projecting onto rectangular matrices with prescribed row and column sums. _Fixed Point Theory and Algorithms for Sciences and Engineering_ 2021, article 23, 2021. https://doi.org/10.1186/s13663-021-00708-1 (accepted October 15, 2021) [140.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/140.pdf)
- H.H. Bauschke, S. Singh, and X. Wang: Finding best approximation pairs for two intersections of closed convex sets. _Computational Optimization and Applications_ 81, pp. 289-308, 2022. https://arxiv.org/abs/2102.13194 and https://doi.org/10.1007/s10589-021-00324-0 (accepted October 15, 2021) [139.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/139.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: Best approximation mappings in Hilbert spaces. _Mathematical Programming (Series A)_ 195, pp. 855-901, 2022. https://arxiv.org/abs/2006.02644 and https://doi.org/10.1007/s10107-021-01718-y (accepted October 1, 2021) [138.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/138.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: On angles between convex cones. _Journal of Applied and Numerical Applications_ 4, pp. 131-141, 2022. https://doi.org/10.23952/jano.4.2022.2.02 (accepted September 22, 2021) [137.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/137.pdf)
- S. Alwadani, H.H. Bauschke, J.P. Revalski, and X. Wang: The difference vectors for convex sets and a resolution of the geometry conjecture. _[Open Journal of Optimization](https://ojmo.centre-mersenne.org/)_ 2, article no. 5, 18 pp, 2021. [https://doi.org/10.5802/ojmo.7](https://doi.org/10.5802/ojmo.7). (accepted May 28, 2021) [136.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/136.pdf)
- S. Alwadani, H.H. Bauschke, and X. Wang: Attouch-Théra duality, generalized cycles and gap vectors. _SIAM Journal on Optimization_ 31(3), pp. 1926-1946, 2021. [https://arxiv.org/abs/2101.05857](https://arxiv.org/abs/2101.05857) and [https://doi.org/10.1137/21M1392085](https://doi.org/10.1137/21M1392085). (accepted April 30, 2021) [135.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/135.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: On angles between convex sets in Hilbert spaces. To appear in _Journal of Mathematical Analysis and Applications_. [https://arxiv.org/abs/2008.09313](https://arxiv.org/abs/2008.09313) and DOI TBA. (accepted April 11, 2021) [134.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/134.pdf)
- S. Alwadani, H.H. Bauschke, J.P. Revalski, and X. Wang: Resolvents and Yosida approximations of displacement mappings of isometries. _Set-Valued and Variational Analysis_ 29(3), pp. 721-733, 2021. [https://arxiv.org/abs/2006.04860](https://arxiv.org/abs/2006.04860) and [https://doi.org/10.1007/s11228-021-00584-2](https://doi.org/10.1007/s11228-021-00584-2) (accepted March 23, 2021) [133.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/133.pdf)
- H.H. Bauschke, S. Gretchko, W.M. Moursi, and M. Saurette: Edelstein's astonishing affine isometry. American Mathematical Monthly 128, pp. 769-809, 2021. [https://arxiv.org/abs/2009.07370](https://arxiv.org/abs/2009.07370) and [https://doi.org/10.1080/00029890.2021.1962151](https://doi.org/10.1080/00029890.2021.1962151)] (accepted September 15, 2020) [132.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/132.pdf)
- S. Alwadani, H.H. Bauschke, and X. Wang: Fixed points of compositions of nonexpansive mappings: finitely many linear reflectors. To appear in _Pure and Applied Functional Analysis_. [https://arxiv.org/abs/2004.12582](https://arxiv.org/abs/2004.12582) (accepted August 15, 2020) [131.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/131.pdf)
- H.H. Bauschke and W.M. Moursi: On the behavior of the Douglas–Rachford algorithm for minimizing a convex function subject to a linear constraint. SIAM Journal on Optimization 30, pp. 2559-2576, 2020. [https://arxiv.org/abs/1908.05406](https://arxiv.org/abs/1908.05406) and [https://doi.org/10.1137/19M1281538](https://doi.org/10.1137/19M1281538) (accepted July 9, 2020) [130.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/130.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: On the linear convergence of circumcentered isometry methods. To appear in Numerical Algorithms. [https://arxiv.org/abs/1912.01063](https://arxiv.org/abs/1912.01063) and [https://doi.org/10.1007/s11075-020-00966-x](https://doi.org/10.1007/s11075-020-00966-x) (accepted June 15, 2020) [129.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/129.pdf)
- H.H. Bauschke, R.S. Burachik, D.B. Herman, and C.Y. Kaya: On Dykstra's algorithm: finite convergence, stalling, and the method of alternating projections. Optimization Letters 14, pp. 1975-1987, 2020. [https://arxiv.org/abs/2001.06747](https://arxiv.org/abs/2001.06747) and [https://doi.org/10.1007/s11590-020-01600-4](https://doi.org/10.1007/s11590-020-01600-4) (accepted May 13, 2020) [128.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/128.pdf)
- H.H. Bauschke, W.M. Moursi, and X. Wang: Generalized monotone operators and their averaged resolvents. _Mathematical Programming (Series B)_ 189, pp. 55-74, 2021. [https://arxiv.org/abs/1902.09827](https://arxiv.org/abs/1902.09827) and [https://doi.org/10.1007/s10107-020-01500-6](https://doi.org/10.1007/s10107-020-01500-6) (accepted March 23, 2020) [127.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/127.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: Circumcentered methods induced by isometries. _Vietnam Journal of Mathematics_ 48, pp. 471-508, 2020. [https://arxiv.org/abs/1908.11576](https://arxiv.org/abs/1908.11576) and [https://doi.org/10.1007/s10013-020-00417-z](https://doi.org/10.1007/s10013-020-00417-z) (accepted February 28, 2020) [126.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/126.pdf)
- H.H. Bauschke and W.M. Moursi: On the minimal displacement vector of compositions and convex combinations of nonexpansive mappings, _Foundations of Computational Mathematics_ 20, pp. 1653-1666, 2020. [https://arxiv.org/abs/1809.01196](https://arxiv.org/abs/1809.01196) and [https://doi.org/10.1007/s10208-020-09449-w](https://doi.org/10.1007/s10208-020-09449-w) and [125.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/125.pdf)
- H.H. Bauschke, W.M. Moursi, and X. Wang: Maximally monotone operators with ranges whose closures are not convex and an answer to a recent question by Stephen Simons. _Proceedings of the AMS_ 148, pp. 2035-2044, 2020. [https://arxiv.org/abs/1904.13031](https://arxiv.org/abs/1904.13031) and DOI TBA. and [124.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/124.pdf)
- S. Bartz, H.H. Bauschke, H.M. Phan, and X. Wang: Multi-marginal maximal monotonicity and convex analysis, _Mathematical Programming (Series A)_ 185, pp. 385-408, 2021. [https://arxiv.org/abs/1901.03777](https://arxiv.org/abs/1901.03777)and [https://doi.org/10.1007/s10107-019-01433-9](https://doi.org/10.1007/s10107-019-01433-9) and [123.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/123.pdf)
- H.H. Bauschke, M.N. Bui, and X. Wang: Applying FISTA to optimization problems (with or) without minimizers, _Mathematical Programming (Series A)_ 184, pp. 349-381, 2020 . [https://arxiv.org/abs/1811.09313](https://arxiv.org/abs/1811.09313) and [https://doi.org/10.1007/s10107-019-01415-x](https://doi.org/10.1007/s10107-019-01415-x) and [122.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/122.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: On circumcenter mappings induced by nonexpansive operators. _Pure and Applied Functional Analysis_ 6(2), pp. 257-288, 2021. [https://arxiv.org/abs/1811.11420](https://arxiv.org/abs/1811.11420) and [http://yokohamapublishers.jp/online2/oppafa/vol6/p257.html](http://yokohamapublishers.jp/online2/oppafa/vol6/p257.html) and [121.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/121.pdf)
- H.H. Bauschke, J. Bolte, J. Chen, M. Teboulle, and X. Wang: On linear convergence of non-Euclidean gradient methods without strong convexity and Lipschitz gradient continuity. _Journal of Optimization Theory and Applications_ 182, pp. 1068-1087, 2019. [https://doi.org/10.1007/s10957-019-01516-9](https://doi.org/10.1007/s10957-019-01516-9) and [120.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/120.pdf)
- H.H. Bauschke, M.N. Bui, and X. Wang: On sums and convex combinations of projectors onto convex sets. _Journal of Approximation Theory_ 242, pp. 31-57, 2019. [https://arxiv.org/abs/1802.02287](https://arxiv.org/abs/1802.02287) and [https://doi.org/10.1016/j.jat.2019.02.001](https://doi.org/10.1016/j.jat.2019.02.001) and [119.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/119.pdf)
- H.H. Bauschke, M.N. Dao, and S.B. Lindstrom: The Douglas-Rachford algorithm for a hyperplane and a doubleton. _Journal of Global Optimization_ 74, pp. 79-93, 2019. [https://arxiv.org/abs/1804.08880](https://arxiv.org/abs/1804.08880) and [https://doi.org/10.1007/s10898-019-00744-7](https://doi.org/10.1007/s10898-019-00744-7) and [118.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/118.pdf)
- S. Alwadani, H.H. Bauschke, W.M. Moursi, and X. Wang: On the asymptotic behaviour of the Aragon Artacho-Campoy algorithm. _Operations Research Letters_ 46, pp. 585-587, 2018. [https://arxiv.org/abs/1805.11165](https://arxiv.org/abs/1805.11165) and [https://doi.org/10.1016/j.orl.2018.10.003](https://doi.org/10.1016/j.orl.2018.10.003) and [117.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/117.pdf)
- H.H. Bauschke and S.B. Lindstrom: Proximal averages for minimization of entropy functionals. _Pure and Applied Functional Analysis_ 5(3), pp. 505-531, 2020. [https://arxiv.org/abs/1807.08878](https://arxiv.org/abs/1807.08878) and [http://www.yokohamapublishers.jp/online2/oppafa/vol5/p505.html](http://www.yokohamapublishers.jp/online2/oppafa/vol5/p505.html) and [116.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/116.pdf)
- H.H. Bauschke, M.N. Dao, and S.B. Lindstrom: Regularizing with Bregman-Moreau envelopes, _SIAM Journal on Optimization_ 28, pp. 3208-3228, 2018. [https://arxiv.org/abs/1705.06019](https://arxiv.org/abs/1705.06019) and [https://doi.org/10.1137/17M1130745](https://doi.org/10.1137/17M1130745) and [115.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/115.pdf)
- H.H. Bauschke, H. Ouyang, and X. Wang: On circumcenters of finite sets in Hilbert spaces. _Linear and Nonlinear Analysis_ 4, pp. 271-295, 2018. [https://arxiv.org/abs/1807.02093](https://arxiv.org/abs/1807.02093) and [http://yokohamapublishers.jp/online2/oplna/vol4/p271.html](http://yokohamapublishers.jp/online2/oplna/vol4/p271.html) and [114.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/114.pdf)
- H.H. Bauschke, L. Miller, and W.M. Moursi: Intriguing maximally monotone operators derived from nonsunny nonexpansive retractions. _Journal on Nonlinear and Variational Analysis_ 2, pp. 123-130, 2018.[http://jnva.biemdas.com/issues/JNVA2018-2-2.pdf](http://jnva.biemdas.com/issues/JNVA2018-2-2.pdf) and [https://arxiv.org/abs/1805.09367](https://arxiv.org/abs/1805.09367) and [113.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/113.pdf)
- H.H. Bauschke, M.N. Bui, and X. Wang: Projecting onto the intersection of a cone and a sphere. _SIAM Journal on Optimization_ 28, pp. 2158-2188, 2018. [https://arxiv.org/abs/1708.00585](https://arxiv.org/abs/1708.00585) and [https://doi.org/10.1137/17M1141849](https://doi.org/10.1137/17M1141849) and [112.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/112.pdf)
- H.H. Bauschke and W.M. Moursi, The magnitude of the minimal displacement vector for compositions and convex combinations of firmly nonexpansive mappings. _Optimization Letters_ 12, pp. 1465-1474, 2018. [https://arxiv.org/abs/1712.00487](https://arxiv.org/abs/1712.00487) and [https://doi.org/10.1007/s11590-018-1259-5](https://doi.org/10.1007/s11590-018-1259-5) and [111.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/111.pdf)
- S. Bartz, H.H. Bauschke, and X. Wang: A class of multimarginal _c_-cyclically monotone sets with explicit _c_-splitting potentials. _Journal of Mathematical Analysis and Applications_ 461, pp. 333-348, 2018. [https://arxiv.org/abs/1608.04477](https://arxiv.org/abs/1608.04477) and [https://doi.org/10.1016/j.jmaa.2018.01.015](https://doi.org/10.1016/j.jmaa.2018.01.015) and [110.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/110.pdf)
- H.H. Bauschke, C. Wang, X. Wang, and J. Xu: Subgradient projectors: extensions, theory, and characterizations. _Set-Valued and Variational Analysis_ 26, pp. 1009-1078, 2018. [https://doi.org/10.1007/s11228-017-0415-x](https://doi.org/10.1007/s11228-017-0415-x) and [109.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/109.pdf)
- H.H. Bauschke, B. Lukens, W.M. Moursi: Affine nonexpansive operators, Attouch-Thera duality, and the Douglas-Rachford algorithm. _Set-Valued and Variational Analysis_ 25, pp. 481-505, 2017. [https://arxiv.org/abs/1603.09418](https://arxiv.org/abs/1603.09418) and [https://doi.org/10.1007/s11228-016-0399-y](https://doi.org/10.1007/s11228-016-0399-y) and [108.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/108.pdf)
- H.H. Bauschke and M.N. Dao: On the finite convergence of the Douglas-Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces. _SIAM Journal on Optimization_ 27, pp. 507-537, 2017. [https://arxiv.org/abs/1604.04657](https://arxiv.org/abs/1604.04657) and [https://doi.org/10.1137/16M1071079](https://doi.org/10.1137/16M1071079) and [107.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/107.pdf)
- S. Bartz, H.H. Bauschke, and X. Wang: The resolvent order: a unification of the orders by Zarantonello, by Loewner, and by Moreau. _SIAM Journal on Optimization_ 27, pp. 466-477, 2017. [https://arxiv.org/abs/1606.08809](https://arxiv.org/abs/1606.08809) and [https://doi.org/10.1137/16M1082172](https://doi.org/10.1137/16M1082172) and [106.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/106.pdf)
- H.H. Bauschke and W.M. Moursi: On the Douglas-Rachford algorithm, _Mathematical Programming (Series A)_ 164, pp. 263-284, 2017. [https://arxiv.org/abs/1604.04603](https://arxiv.org/abs/1604.04603) and DOI and [105.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/105.pdf)
- H.H. Bauschke, J. Schaad, and X. Wang: On Douglas-Rachford operators that fail to be proximal mappings, _Mathematical Programming (Series B)_ 168, pp. 55-61, 2018. [https://arxiv.org/abs/1602.05626](https://arxiv.org/abs/1602.05626) and [https://doi.org/10.1007/s10107-016-1076-5](https://doi.org/10.1007/s10107-016-1076-5) and [104.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/104.pdf)
- H.H. Bauschke, J. Bolte, and M. Teboulle: A descent lemma beyond Lipschitz continuity: first order methods revisited and applications. _Mathematics of Operations Research_ 42, pp. 330-348, 2017. [https://doi.org/10.1287/moor.2016.0817](https://doi.org/10.1287/moor.2016.0817) and [103.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/103.pdf)
- H.H. Bauschke, M.N. Dao, and W.M. Moursi: The Douglas-Rachford algorithm in the affine-convex case. _Operations Research Letters_ 44, pp. 379-382, 2016. [https://arxiv.org/abs/1505.06408](https://arxiv.org/abs/1505.06408) and [https://doi.org/10.1016/j.orl.2016.03.010](https://doi.org/10.1016/j.orl.2016.03.010) and [102.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/102.pdf)
- H.H. Bauschke and W.M. Moursi: The Douglas-Rachford algorithm for two (not necessarily intersecting) affine subspaces. _SIAM Journal on Optimization_ 26, pp. 968-985, 2016. [https://arxiv.org/abs/1504.03721](https://arxiv.org/abs/1504.03721)and [https://doi.org/10.1137/15M1016989](https://doi.org/10.1137/15M1016989) and [101.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/101.pdf)
- S. Bartz, H.H. Bauschke, S.M. Moffat, and X. Wang: The resolvent average of monotone operators: dominant and recessive properties. _SIAM Journal on Optimization_ 26, pp. 602-634, 2016. [https://arxiv.org/abs/1505.02718](https://arxiv.org/abs/1505.02718) and [https://doi.org/10.1137/15M1020964](https://doi.org/10.1137/15M1020964) and [100.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/100.pdf)
- H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and X. Wang: Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces. _Numerical Algorithms_ 73, pp. 33-76, 2016. [https://doi.org/10.1007/s11075-015-0085-4](https://doi.org/10.1007/s11075-015-0085-4) and [99.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/99.pdf)
- H.H. Bauschke, M.N. Dao, D. Noll and H.M. Phan: On Slater's condition and finite convergence of the Douglas-Rachford algorithm for solving convex feasibility problems in Euclidean spaces, _Journal of Global Optimization_ 65, pp. 329-349, 2016. [https://arxiv.org/abs/1504.06969](https://arxiv.org/abs/1504.06969) and [https://doi.org/10.1007/s10898-015-0373-5](https://doi.org/10.1007/s10898-015-0373-5) and [98.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/98.pdf). Possibly available [here](https://link.springer.com/epdf/10.1007/s10898-015-0373-5?shared_access_token=5T0UCf5j7NfLJ8se5DTNnfe4RwlQNchNByi7wbcMAY5az9AUM0SZIrb0VWI1kSqGAioqOIrMspOoQHxkkSLNpKpnNFDpiYX7Q_yOwd13p1aeYkM8waKn6TYwUqHxyBcn8aXk0uw94AdammoXmRrwtw%3D%3D). This paper won the [Journal of Global Optimization's **Best Paper Award**](https://www.springer.com/journal/10898/updates/17329608) in 2016.
- H.H. Bauschke, G.R. Douglas, and W.M. Moursi: On a result of Pazy concerning the asymptotic behaviour of nonexpansive mappings. _Journal of Fixed Point Theory and Applications_ 18, pp. 297-307, 2016. [https://arxiv.org/abs/1505.04129](https://arxiv.org/abs/1505.04129) and [https://doi.org/10.1007/s11784-015-0278-4](https://doi.org/10.1007/s11784-015-0278-4) and [97.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/97.pdf)
- H.H. Bauschke, V.R. Koch, and H.M. Phan: Stadium norm and Douglas-Rachford splitting: a new approach to road design optimization. _Operations Research_ 64, pp. 201-218, 2016. [https://arxiv.org/abs/1409.8244](https://arxiv.org/abs/1409.8244)and [https://doi.org/10.1287/opre.2015.1427](https://doi.org/10.1287/opre.2015.1427) and [96.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/96.pdf)
- H.H. Bauschke, M.N. Dao, and W.M. Moursi: On Fejer monotone sequences and nonexpansive mappings. _Linear and Nonlinear Analysis_ 1, pp. 287-295, 2015. [https://arxiv.org/abs/1507.05585](https://arxiv.org/abs/1507.05585) and [http://yokohamapublishers.jp/online2/oplna/vol1/p287.html](http://yokohamapublishers.jp/online2/oplna/vol1/p287.html) and [95.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/95.pdf)
- H.H. Bauschke, W.L. Hare, and W.M. Moursi: On the range of the Douglas-Rachford operator. _Mathematics of Operations Research_ 41, pp. 884-897, 2016. [https://arxiv.org/abs/1405.4006](https://arxiv.org/abs/1405.4006) and [https://doi.org/10.1287/moor.2015.0759](https://doi.org/10.1287/moor.2015.0759) and [94.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/94.pdf)
- H.H. Bauschke and W.M. Moursi: On the order of the operators in the Douglas-Rachford algorithm. _Optimization Letters_ 10, pp. 447-455, 2016. [https://arxiv.org/abs/1505.02796](https://arxiv.org/abs/1505.02796) and [https://doi.org/10.1007/s11590-015-0920-5](https://doi.org/10.1007/s11590-015-0920-5) and [93.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/93.pdf)
- H.H. Bauschke, Y. Lucet, and H.M. Phan: On the convexity of piecewise-defined functions. _ESAIM COCV 22_, pp. 728-742, 2016. [https://arxiv.org/abs/1408.3771](https://arxiv.org/abs/1408.3771) and [https://doi.org/10.1051/cocv/2015023](https://doi.org/10.1051/cocv/2015023) [92.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/92.pdf)
- H.H. Bauschke, M.N. Dao, D. Noll, and H.M. Phan: Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study. _Journal of Convex Analysis_ 23, pp. 237-261, 2016. [https://arxiv.org/abs/1501.06603](https://arxiv.org/abs/1501.06603) and [https://www.heldermann.de/JCA/JCA23/JCA231/jca23009.htm](https://www.heldermann.de/JCA/JCA23/JCA231/jca23009.htm)and [91.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/91.pdf)
- H.H. Bauschke, C. Wang, X. Wang, and J. Xu: On subgradient projectors. _SIAM Journal on Optimization_ 25, pp. 1064-1082, 2015. [https://arxiv.org/abs/1403.7135](https://arxiv.org/abs/1403.7135) and [https://doi.org/10.1137/14096267X](https://doi.org/10.1137/14096267X) and [90.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/90.pdf)
- H.H. Bauschke, C. Wang, X. Wang, and J. Xu: On the finite convergence of a projected cutter method. _Journal of Optimization Theory_ 165, pp. 901-916, 2015. [https://arxiv.org/abs/1405.2877](https://arxiv.org/abs/1405.2877) and [https://doi.org/10.1007/s10957-014-0659-7](https://doi.org/10.1007/s10957-014-0659-7) and [89.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/89.pdf)
- H.H. Bauschke, W.L. Hare, and W.M. Moursi: A derivative-free comirror algorithm for convex optimization. _Optimization Methods & Software_ 30, pp. 706-726, 2015. [https://arxiv.org/abs/1210.6403](https://arxiv.org/abs/1210.6403)and [https://doi.org/10.1080/10556788.2014.968158](https://doi.org/10.1080/10556788.2014.968158) and [88.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/88.pdf)
- H.H. Bauschke, D. Noll, and H.M. Phan: Linear and strong convergence of algorithms involving averaged nonexpansive operators. _Journal of Mathematical Analysis and Applications_ 421, pp. 1-20, 2015. [https://arxiv.org/abs/1402.5460](https://arxiv.org/abs/1402.5460) and [https://doi.org/10.1016/j.jmaa.2014.06.075](https://doi.org/10.1016/j.jmaa.2014.06.075) and [87.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/87.pdf)
- H.H. Bauschke, J.Y. Bello Cruz, T.T.A. Nghia, H.M. Phan, and X. Wang: The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. _Journal of Approximation Theory_ 185, pp. 63-79, 2014. [https://arxiv.org/abs/1309.4709](https://arxiv.org/abs/1309.4709) and [https://doi.org/10.1016/j.jat.2014.06.002](https://doi.org/10.1016/j.jat.2014.06.002) and [86.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/86.pdf)
- H.H. Bauschke and D. Noll: On the local convergence of the Douglas-Rachford algorithm. _Archiv der Mathematik_ 102, pp. 589-600, 2014. [https://arxiv.org/abs/1401.6188](https://arxiv.org/abs/1401.6188) and [https://doi.org/10.1007/s00013-014-0652-2](https://doi.org/10.1007/s00013-014-0652-2) and [85.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/85.pdf)
- H.H. Bauschke, W.L. Hare, and W.M. Moursi: Generalized solutions for the sum of two maximally monotone operators. _SIAM Journal on Control and Optimization_ 52, pp. 1034-1047, 2014. [https://arxiv.org/abs/1306.1771](https://arxiv.org/abs/1306.1771) and [https://doi.org/10.1137/130924214](https://doi.org/10.1137/130924214) and [84.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/84.pdf)
- H.H. Bauschke, J. Chen and X. Wang: A Bregman projection method for approximating fixed points of quasi-Bregman nonexpansive mappings. _Applicable Analysis_ 94, pp. 75-84, 2015. [https://arxiv.org/abs/1309.6402](https://arxiv.org/abs/1309.6402) and [https://doi.org/10.1080/00036811.2013.868443](https://doi.org/10.1080/00036811.2013.868443) and [83.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/83.pdf)
- H.H. Bauschke and D. Noll: On cluster points of alternating projections. _Serdica Mathematical Journal_ 39, pp. 355-364, 2013. [https://arxiv.org/abs/1307.2712](https://arxiv.org/abs/1307.2712) and [http://www.math.bas.bg/serdica/n34_13.html](http://www.math.bas.bg/serdica/n34_13.html)and [82.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/82.pdf)
- H.H. Bauschke, H.M. Phan and X. Wang: The method of alternating relaxed projections for two nonconvex sets. _Vietnam Journal of Mathematics_ 42, pp. 421-450, 2014. [https://arxiv.org/abs/1305.4296](https://arxiv.org/abs/1305.4296)and [https://doi.org/10.1007/s10013-013-0049-8](https://doi.org/10.1007/s10013-013-0049-8) and [81.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/81.pdf)
- H.H. Bauschke, D.R. Luke, H.M. Phan and X. Wang: Restricted normal cones and sparsity optimization with affine constraints. _Foundations of Computational Mathematics_ 14, pp. 63-83, 2014. [https://arxiv.org/abs/1205.0320](https://arxiv.org/abs/1205.0320) and [https://doi.org/10.1007/s10208-013-9161-0](https://doi.org/10.1007/s10208-013-9161-0) and [80.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/80.pdf)
- H.H. Bauschke, D.R. Luke, H.M. Phan and X. Wang: Restricted normal cones and the method of alternating projections: applications, _Set-Valued and Variational Analysis_ 21, pp. 475-501, 2013. [https://doi.org/10.1007/s11228-013-0238-3](https://doi.org/10.1007/s11228-013-0238-3) and [79.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/79.pdf)
- H.H. Bauschke, D.R. Luke, H.M. Phan and X. Wang: Restricted normal cones and the method of alternating projections: theory. _Set-Valued and Variational Analysis_ 21, pp. 431-473, 2013. [https://doi.org/10.1007/s11228-013-0239-2](https://doi.org/10.1007/s11228-013-0239-2) and [78.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/78.pdf)
- H.H. Bauschke, J. Sarada, and X. Wang: On moving averages. _Journal of Convex Analysis_ 21, pp. 219-235, 2014. [https://arxiv.org/abs/1206.3610](https://arxiv.org/abs/1206.3610) and [https://www.heldermann.de/JCA/JCA21/JCA211/jca21012.htm](https://www.heldermann.de/JCA/JCA21/JCA211/jca21012.htm) and [77.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/77.pdf)
- H.H. Bauschke, J. Chen, and X. Wang: A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness condition. _Journal of Nonlinear and Convex Analysis_ 15(1), pp. 129-135, 2014. [https://arxiv.org/abs/1211.1639](https://arxiv.org/abs/1211.1639) and [http://www.yokohamapublishers.jp/online2/jncav21-9.html](http://www.yokohamapublishers.jp/online2/jncav21-9.html) and [76.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/76.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: Rectangularity and paramonotonicity of maximally monotone operators. _Optimization_ 63, pp. 487-504, 2014. [https://arxiv.org/abs/1201.4220](https://arxiv.org/abs/1201.4220) and [https://doi.org/10.1080/02331934.2012.707653](https://doi.org/10.1080/02331934.2012.707653) and [75.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/75.pdf)
- H.H. Bauschke, R.I. Bot, W.L. Hare, and W.M. Moursi: Attouch-Thera duality revisited: paramonotonicity and operator splitting. _Journal of Approximation Theory_ 164, pp. 1065-1084, 2012. [https://arxiv.org/abs/1110.4877](https://arxiv.org/abs/1110.4877) and [https://doi.org/10.1016/j.jat.2012.05.008](https://doi.org/10.1016/j.jat.2012.05.008) and [74.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/74.pdf)
- H.H. Bauschke, J.M. Borwein, X. Wang, and L. Yao: The Brezis-Browder theorem in a general Banach space. _Journal of Functional Analysis_ 22, pp. 4948-4971, 2012. [https://arxiv.org/abs/1110.5706](https://arxiv.org/abs/1110.5706) and [https://doi.org/10.1016/j.jfa.2012.03.023](https://doi.org/10.1016/j.jfa.2012.03.023) and [73.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/73.pdf)
- H.H. Bauschke, J.M. Borwein, X. Wang, and L. Yao: Monotone operators and "bigger conjugate" functions. _Journal of Convex Analysis_ 20, pp. 143-155, 2013. [https://arxiv.org/abs/1108.2578](https://arxiv.org/abs/1108.2578) and [https://www.heldermann.de/JCA/JCA20/JCA201/jca20009.htm](https://www.heldermann.de/JCA/JCA20/JCA201/jca20009.htm) and [72.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/72.pdf)
- H.H. Bauschke, J.M. Borwein, X. Wang, and L. Yao: Construction of pathological maximally monotone operators on non-reflexive Banach spaces. _Set-Valued and Variational Analysis_ 20, pp. 387-415, 2012. [https://arxiv.org/abs/1108.1463](https://arxiv.org/abs/1108.1463) and [https://doi.org/10.1007/s11228-012-0209-0](https://doi.org/10.1007/s11228-012-0209-0) and [71.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/71.pdf)
- H.H. Bauschke, V. Martin-Marquez, S.M. Moffat, and X. Wang Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular. _Fixed Point Theory and Applications_ 2012, 2012:53. [**open access published version**](70published.pdf) and [https://doi.org/10.1186/1687-1812-2012-53](https://doi.org/10.1186/1687-1812-2012-53) and [70.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/70published.pdf)
- H.H. Bauschke, X. Wang, and C.J.S. Wylie: Fixed points of averages of resolvents: geometry and algorithms. _SIAM Journal on Optimization_ 22(1), pp. 24-40, 2012. [https://arxiv.org/abs/1102.1478](https://arxiv.org/abs/1102.1478) and [https://doi.org/10.1137/110823778](https://doi.org/10.1137/110823778) and [69.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/69.pdf)
- H.H. Bauschke and Y. Lucet: What is a Fenchel conjugate? _Notices of the AMS_ 59(1), pp. 44-46, January 2012. [**open access published version**](http://www.ams.org/notices/201201/rtx120100044p.pdf) and [http://dx.doi.org/10.1090/noti788](http://dx.doi.org/10.1090/noti788) and [68.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/68published.pdf)
- H.H. Bauschke, S.M. Moffat, and X. Wang: Near equality, near convexity, sums of maximally monotone operators, and averages of firmly nonexpansive mappings, _Mathematical Programming (Series B)_ 139, pp. 55-70, 2013. [https://arxiv.org/abs/1105.0029](https://arxiv.org/abs/1105.0029) and [https://doi.org/10.1007/s10107-013-0659-7](https://doi.org/10.1007/s10107-013-0659-7) and [67.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/67.pdf)
- H.H. Bauschke, J.M. Borwein, X. Wang, and L. Yao: Every maximally monotone operator of Fitzpatrick-Phelps type is actually of dense type. _Optimization Letters_ 6(8), pp. 1875-1881 (2012). [https://arxiv.org/abs/1104.0750](https://arxiv.org/abs/1104.0750) and [https://doi.org/10.1007/s11590-011-0383-2](https://doi.org/10.1007/s11590-011-0383-2) and [66.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/66.pdf)
- H.H. Bauschke, S.M. Moffat, and X. Wang: Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality. _Set-Valued and Variational Analysis_ 20, pp. 131-153, 2012 [https://arxiv.org/abs/1101.4688](https://arxiv.org/abs/1101.4688) and [https://doi.org/10.1007/s11228-011-0187-7](https://doi.org/10.1007/s11228-011-0187-7) and [65.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/65.pdf)
- X. Wang and H.H. Bauschke: Compositions and averages of two resolvents: relative geometry of fixed point sets and a partial answer to a question by C. Byrne, _Nonlinear Analysis_ 74, pp. 4550-4572, 2011. [https://arxiv.org/abs/1003.4793](https://arxiv.org/abs/1003.4793) and [https://doi.org/10.1016/j.na.2011.04.024](https://doi.org/10.1016/j.na.2011.04.024) and [64.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/64.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: On Borwein-Wiersma decompositions of monotone linear relations. _SIAM Journal on Optimization_ 20, pp. 2636-2652, 2010. [https://arxiv.org/abs/0912.2772](https://arxiv.org/abs/0912.2772) and [https://doi.org/10.1137/09078016X](https://doi.org/10.1137/09078016X) and [63.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/63.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter. _Journal of Mathematical Analysis and Applications_ 370, pp. 224-241, 2010. [https://arxiv.org/abs/0909.2675](https://arxiv.org/abs/0909.2675) and [https://doi.org/10.1016/j.jmaa.2010.04.029](https://doi.org/10.1016/j.jmaa.2010.04.029) and [62.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/62.pdf) and [62published.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/62published.pdf)
- H.H. Bauschke, M.S. Macklem, J.B. Sewell, and X. Wang: Klee sets and Chebyshev centers for the right Bregman distance. _Journal of Approximation Theory_ 162, pp. 1225-1244, 2010. [https://arxiv.org/abs/0908.2013](https://arxiv.org/abs/0908.2013) and [https://doi.org/10.1016/j.jat.2010.01.001](https://doi.org/10.1016/j.jat.2010.01.001) and [61.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/61.pdf) and [61puslished.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/61published.pdf)
- H.H. Bauschke and P.L. Combettes: The Baillon-Haddad theorem revisited. _Journal of Convex Analysis_ 17, pp. 781-787, 2010. [https://arxiv.org/abs/0906.0807](https://arxiv.org/abs/0906.0807) and [https://www.heldermann.de/JCA/JCA17/JCA173/jca17051.htm](https://www.heldermann.de/JCA/JCA17/JCA173/jca17051.htm) and [60.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/60.pdf)
- H.H. Bauschke, S.M. Moffat, and X. Wang: The resolvent average for positive semidefinite matrices. _Linear Algebra and Its Applications_ 432, pp. 1757-1771, 2010. https://arxiv.org/abs/0910.3705 and https://doi.org/10.1016/j.laa.2009.11.028 and [59.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/59.pdf)
- H.H. Bauschke: A note on the paper by Eckstein and Svaiter on "General projective splitting methods for sums of maximal monotone operators", _SIAM Journal on Control and Optimization_ 48, pp. 2513-2515, 2009. https://arxiv.org/abs/0905.3438 and [https://doi.org/10.1137/090759690](https://doi.org/10.1137/090759690) and [58.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/58.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: An answer to S. Simons' question on the maximal monotonicity of the sum of a maximal monotone linear operator and a normal cone operator, _Set-Valued and Variational Analysis_ 17, pp. 195-201, 2009. https://arxiv.org/abs/0902.1189 and https://doi.org/10.1007/s11228-009-0110-7 and [57.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/57.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: Autoconjugate representers for linear monotone operators, _Mathematical Programming (Series B)_ 123, pp. 5-24, 2010. https://arxiv.org/abs/0802.1375 and https://doi.org/10.1007/s10107-009-0319-0 and [56.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/56.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: Montone linear relations: maximality and Fitzpatrick functions, _Journal of Convex Analysis_ 16, pp 673-686, 2009. https://arxiv.org/abs/0805.4256 and https://www.heldermann.de/JCA/JCA16/JCA163/jca16039.htm and [55.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/55.pdf)
- H.H. Bauschke, X. Wang, J. Ye and X. Yuan: Bregman distances and Klee sets, _Journal of Approximation Theory_ 158, pp. 170-183, 2009. https://arxiv.org/abs/0802.2322 and https://doi.org/10.1016/j.jat.2008.08.015 and [54.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/54.pdf)
- H.H. Bauschke, X. Wang, J. Ye and X. Yuan: Bregman distances and Chebyshev sets, _Journal of Approximation Theory_ 159, pp. 3-25, 2009. https://arxiv.org/abs/0712.4030 and https://doi.org/10.1016/j.jat.2008.08.014 and [53.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/53.pdf)
- H.H. Bauschke, F. Deutsch and H. Hundal: Characterizing arbitrarily slow convergence in the method of alternating projections, _International Transactions in Operational Research_ 16, pp. 413-425, 2009. https://arxiv.org/abs/0710.2387 and https://doi.org/10.1111/j.1475-3995.2008.00682.x and [52.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/52.pdf)
- H.H. Bauschke and P.L. Combettes: A Dykstra-like algorithm for two monotone operators, _Pacific Journal of Optimization_ 4, pp. 383-391, 2008. http://www.ybook.co.jp/online-p/PJO/vol4/pjov4n3p383.pdf and [51.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/51.pdf)
- H.H. Bauschke, R. Goebel, Y. Lucet, and X. Wang: The proximal average: basic theory, _SIAM Journal on Optimization_ 19, pp. 766-785, 2008. https://doi.org/10.1137/070687542 and [50.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/50.pdf)
- H.H. Bauschke and X. Wang: The kernel average for two convex functions and its applications to the extension and representation of monotone operators, _Transactions of the American Mathematical Society_ 361, pp. 5947-5965, 2009. https://doi.org/10.1090/S0002-9947-09-04698-4 and [49.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/49.pdf)
- H.H. Bauschke and X. Wang: An explicit example of a maximal 3-cyclically monotone operator with bizarre properties, _Nonlinear Analysis_ 69, pp. 2875-2891, 2008. https://doi.org/10.1016/j.na.2007.08.059 and [48.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/48.pdf)
- Y. Lucet, H.H. Bauschke, and M. Trienis: The piecewise linear-quadratic model for computational convex analysis, _Computational Optimization and Applications_ 43, pp. 95-118, 2009. https://doi.org/10.1007/s10589-007-9124-y and [47.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/47.pdf)
- H.H. Bauschke, Y. Lucet, and M. Trienis: How to transform one convex function continuously into another, _SIAM Review_ 50, pp. 115-132, 2008. https://doi.org/10.1137/060664513 and [46.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/46.pdf)
- H.H. Bauschke, Y. Lucet, and X. Wang: Primal-dual symmetric antiderivatives for cyclically monotone operators, _SIAM Journal on Control and Optimization_ 46, pp. 2031-2051, 2007. https://doi.org/10.1137/060675794 and [45.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/45.pdf)
- H.H. Bauschke, J.M. Borwein, and X. Wang: Fitzpatrick functions and continuous linear monotone operators, _SIAM Journal on Optimization_ 18, pp. 789-809, 2007. [https://doi.org/10.1137/060655468](https://doi.org/10.1137/060655468) and [44.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/44.pdf)
- H.H. Bauschke and X. Wang: A convex-analytical approach to extension results for _n_-cyclically monotone operators, _Set-Valued Analysis_ 15, pp. 297-306, 2007. https://doi.org/10.1007/s11228-006-0029-1 and [43.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/43.pdf)
- H.H. Bauschke: Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings, _Proceedings of the American Mathematical Society_ 135, pp. 135-139, 2007. https://doi.org/10.1090/S0002-9939-06-08770-3 and [42.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/42.pdf)
- H.H. Bauschke, P.L. Combettes, and D. Noll: Joint minimization with alternating Bregman proximity operators, _Pacific Journal of Optimization_ 2, pp. 401-424, 2006. http://www.yokohamapublishers.jp/online2/pjov2-1.html and [41.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/41.pdf)
- S. Bartz, H.H. Bauschke, J.M. Borwein, S. Reich, and X. Wang: Fitzpatrick functions, cyclic monotonicity and Rockafellar's antiderivative, _Nonlinear Analysis_ 66, pp. 1198-1223, 2007. https://doi.org/10.1016/j.na.2006.01.013 and [40.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/40.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space, _Journal of Approximation Theory_ 141, pp. 63-69, 2006. https://doi.org/10.1016/j.jat.2006.01.003. and [39.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/39.pdf)
- H.H. Bauschke, P.L. Combettes, and S.G. Kruk: Extrapolation algorithm for affine-convex feasibility problems, _Numerical Algorithms_ 41(3), pp. 239-274, 2006. https://doi.org/10.1007/s11075-005-9010-6 and [38.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/38.pdf)
- H.H. Bauschke, D.A. McLaren, and H.S. Sendov: Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick, _Journal of Convex Analysis_ 13(3+4), pp. 499-523, 2006. https://www.heldermann.de/JCA/JCA13/JCA133/jca13043.htm and [37.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/37.pdf)
- H.H. Bauschke and M.R. Edwards: A conjecture by De Pierro is true for translates of regular subspaces, _Journal of Nonlinear and Convex Analysis_ 6, pp. 93-116, 2005. http://www.yokohamapublishers.jp/online2/jncav6.html and [36.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/36.pdf)
- L. Lovasic, H. Bauschke, and C. Janus: Working memory impairment in a transgenic amyloid precursor protein TgCRND8 mouse model of Alzheimer's disease, _Genes, Brain and Behavior_ 4, pp. 197-208, 2005. https://doi.org/10.1111/j.1601-183X.2004.00104.x
- H.H. Bauschke and M. von Mohrenschildt: Symbolic computation of Fenchel conjugates, _ACM SIGSAM Bulletin_ 40(1), pp. 18-28, 2006. http://dx.doi.org/10.1145/1151446.1151453
- H.H. Bauschke, P.L. Combettes, and S. Reich: The asymptotic behavior of the composition of two resolvents, _Nonlinear Analysis: Theory, Methods, and Applications_ 60, pp. 283-301, 2005. https://doi.org/10.1016/j.na.2004.07.054 and [33.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/33.pdf)
- H.H. Bauschke, J.V. Burke, F.R. Deutsch, H.S. Hundal, and J.D. Vanderwerff: A new proximal point iteration that converges weakly but not in norm, _Proceedings of the American Mathematical Society_ 133(6), pp. 1829-1835, 2005. https://doi.org/10.1090/S0002-9939-05-07719-1 and [32.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/32.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces, _Journal of Approximation Theory_ 127, pp. 178-192, 2004. https://doi.org/10.1016/j.jat.2004.02.006 and [31.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/31.pdf)
- H.H. Bauschke, E. Matoušková, and S. Reich: Projection and proximal point methods: convergence results and counterexamples, _Nonlinear Analysis: Theory, Methods, and Applications_ 56(5), pp. 715-738, 2004. https://doi.org/10.1016/j.na.2003.10.010 and [30.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/30.pdf)
- H.H. Bauschke and S.G. Kruk: The method of reflection-projection for convex feasibility problems with an obtuse cone, _Journal of Optimization Theory and Applications_ 120(3), pp. 503-531, 2004. https://doi.org/10.1023/B:JOTA.0000025708.31430.22 and [29.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/29.pdf)
- H.H. Bauschke, J.M. Borwein, and P.L. Combettes: Bregman monotone optimization algorithms, _SIAM Journal on Control and Optimization_ 42(2), pp. 596-636, 2003. https://doi.org/10.1137/S0363012902407120 and [28.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/28.pdf)
- H.H. Bauschke and P.L. Combettes: Construction of best Bregman approximations in reflexive Banach spaces, _Proceedings of the American Mathematical Society_ 131(12), pp. 3757-3766, 2003. https://doi.org/10.1090/S0002-9939-03-07050-3 and [27.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/27.pdf)
- H.H. Bauschke, F. Deutsch, H. Hundal, and S.-H. Park: Accelerating the convergence of the method of alternating projections, _Transactions of the American Mathematical Society_ 355(9), pp. 3433-3461, 2003 https://doi.org/10.1090/S0002-9947-03-03136-2 and [26.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/26.pdf)
- H.H. Bauschke, C.H. Hamilton, M.S. Macklem, J.S. McMichael, and N.R. Swart: Recompression of JPEG images by Requantization, _IEEE Transactions on Image Processing_ 12(7), pp. 843-849, 2003. https://doi.org/10.1109/TIP.2003.812375 and [25.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/25.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: Hybrid Projection Reflection Method for Phase Retrieval, _Journal of the Optical Society of America A_ 20(6), pp. 1025-1034, 2003. https://doi.org/10.1364/JOSAA.20.001025 and [24.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/24.pdf)
- H.H. Bauschke and P.L. Combettes: Iterating Bregman retractions,_SIAM Journal on Optimization_ 13(4), pp. 1159-1173, 2003. https://doi.org/10.1137/S1052623402410557 and [23.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/23.pdf)
- H.H. Bauschke: Duality for Bregman projections onto translated cones and affine subspaces, _Journal of Approximation Theory_ 121, pp. 1-12, 2003. https://doi.org/10.1016/S0021-9045(02)00040-0 and [22.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/22.pdf)
- H.H. Bauschke: The composition of finitely many projections onto closed convex sets in Hilbert space is asymptotically regular, _Proceedings of the American Mathematical Society_ 131(1), pp. 141-146, 2003. https://doi.org/10.1090/s0002-9939-02-06528-0 and [21.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/21.pdf)
- H.H. Bauschke and D. Noll: The method of forward projections,_Journal of Nonlinear and Convex Analysis_ 3(2), pp. 191-205, 2002. http://www.yokohamapublishers.jp/online2/jncav3.html and [20.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/20.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization, _Journal of the Optical Society of America_ 19(7), pp. 1334-1345, 2002. https://doi.org/10.1364/JOSAA.19.001334 and [19.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/19.pdf)
- H.H. Bauschke, J.M. Borwein, and P.L. Combettes: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, _Communications in Contemporary Mathematics_ 3(4), pp. 615-647, 2001. https://doi.org/10.1142/S0219199701000524 and [18.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/18.pdf)
- H.H. Bauschke, O. Guler, A.S. Lewis, and H.S. Sendov: Hyperbolic polynomials and convex analysis, _Canadian Journal of Mathematics_ 53(3), pp. 470-488, 2001. https://doi.org/10.4153/CJM-2001-020-6 and [17.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/17.pdf)
- H.H. Bauschke and P.L. Combettes: A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces,_Mathematics of Operations Research_ 26(2), pp. 248-264, 2001. https://doi.org/10.1287/moor.26.2.248.10558 and [16.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/16.pdf)
- H.H. Bauschke, J.M. Borwein, and P. Tseng: Bounded linear regularity, strong CHIP, and CHIP are distinct properties, _Journal of Convex Analysis_ 7(2), pp. 395-412, 2000. https://www.heldermann.de/JCA/JCA07/JCA072/jca07020.htm and [15.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/15.pdf)
- H.H. Bauschke and A.S. Lewis: Dykstra's algorithm with Bregman projections: a convergence proof, _Optimization_ 48, pp. 409-427, 2000. https://doi.org/10.1080/02331930008844513 and [14.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/14.pdf)
- H.H. Bauschke, D. Noll, A. Celler, and J.M. Borwein: An EM-algorithm for dynamic SPECT, _IEEE Transactions on Medical Imaging_ 18(3), pp. 252-261, 1999. https://doi.org/10.1109/42.764899 and [13.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/13.pdf)
- H.H. Bauschke and J.M. Borwein Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators, _Pacific Journal of Mathematics_ 189(1), pp. 1-20, 1999. https://doi.org/10.2140/pjm.1999.189.1 and [12.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/12.pdf)
- H.H. Bauschke and S. Simons: Stronger maximal monotonicity properties of linear operators, _Bulletin of the Australian Mathematical Society_ 60(1), 163-174, 1999. https://doi.org/10.1017/S0004972700033426 and [11.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/11.pdf)
- H.H. Bauschke, J.M. Borwein and W. Li: Strong conical hull intersection property, bounded linear regularity, Jameson's property (G), and error bounds in convex optimization,_Mathematical Programming (Series A)_ 86(1), pp. 135-160, 1999. https://doi.org/10.1007/s101070050083 and [10.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/10.pdf)
- H.H. Bauschke: Proof of a conjecture by Deutsch, Li, and Swetits on duality of optimization problems, _Journal of Optimization Theory and Applications_ 102(3), pp. 697-703, 1999. https://doi.org/10.1023/A:1022610425736 and [09.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/09.pdf)
- H.H. Bauschke and M. von Mohrenschildt: Fenchel conjugates and subdifferentials in Maple, accepted for publication in _MapleTech_, 1999. (Journal faltered before publication) [08.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/08.pdf)
- H.H. Bauschke and J.M. Borwein: Legendre functions and the method of random Bregman projections, _Journal of Convex Analysis_ 4(1), pp. 27-67, 1997. https://www.heldermann.de/JCA/jca04.htm and [07.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/07.pdf)
- H.H. Bauschke and R.M. Corless: Analyzing a projection method with Maple, _MapleTech_ 4(1), pp. 2-7, 1997. [06.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/06.pdf)
- H.H. Bauschke and J.M. Borwein: On projection algorithms for solving convex feasibility problems, _SIAM Review_ 38(3), pp. 367-426, 1996. https://doi.org/10.1137/S0036144593251710 and [05.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/05.pdf)
- H.H. Bauschke: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, _Journal of Mathematical Analysis and its Applications_ 202(1), pp. 150-159, 1996. https://doi.org/10.1006/jmaa.1996.0308 and [04.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/04.pdf)
- H.H. Bauschke: A norm convergence result on random products of relaxed projections in Hilbert space, _Transactions of the American Mathematical Society_ 347(4), pp. 1365-1373, 1995. https://doi.org/10.1090/S0002-9947-1995-1257097-1 and [03.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/03.pdf)
- H.H. Bauschke and J.M. Borwein: Dykstra's alternating projection algorithm for two sets, _Journal of Approximation Theory_ 79(3), pp. 418-443, 1994. https://doi.org/10.1006/jath.1994.1136 and [02.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/02.pdf)
- H.H. Bauschke and J.M. Borwein: On the convergence of von Neumann's alternating projection algorithm for two sets, _Set-Valued Analysis_ 1(2), pp. 185-212, 1993. https://doi.org/10.1007/BF01027691 and [01.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/01.pdf)
### 19 Conference Proceedings ###
- H.H. Bauschke, S. Gretchko, and W.M. Moursi: Numerical explorations of feasibility algorithms for finding points in the intersection of finite sets, in _Splitting Algorithms, Monotone Operator Theory, and Applications_, pp. 69-90, Springer, 2019. [c19.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c19.pdf)
- H.H. Bauschke, R.S. Burachik, and C.Y. Kaya: Constraint splitting and projection methods for optimal control of double integrator, in _Splitting Algorithms, Monotone Operator Theory, and Applications_, pp. 45-68, Springer, 2019. [c18.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c18.pdf)
- H.H. Bauschke, F. Iorio, and V.R. Koch: The method of cyclic intrepid projections: convergence analysis and numerical experiments, in _The impact of applications on mathematics_, pp. 187-200, Springer, 2014. [c17.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c17.pdf)
- H.H. Bauschke and V.R. Koch: Projection methods: Swiss Army knives for solving feasibility and best approximation problems with halfspaces, in _Infinite Products and Their Applications_, pp. 1-40, AMS, 2015. [c16.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c16.pdf)
- H.H. Bauschke: New demiclosedness principles for (firmly) nonexpansive operators, _Computational and Analytical Mathematics (Burnaby 2011)_, Springer, pp. 19-28, 2013. [c15.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c15.pdf)
- H.H. Bauschke, S.M. Moffat, and X. Wang: Self-dual smooth approximations of convex functions via the proximal average,_Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Banff 2009)_ , Springer, pp. 23-32, 2011. [c14.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c14.pdf)
- H.H. Bauschke, M.S. Macklem, and X. Wang: Chebyshev sets, Klee sets, and Chebyshev centers with respect to Bregman distances: recent results and open problems, _Fixed-Point Algorithms for Inverse Problems in Science and Engineering (Banff 2009)_ , Springer, pp. 1-22, 2011. [c13.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c13.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: On the maximal monotonicity of the sum of a maximal monotone linear relation and the subdifferential operator of a sublinear function,_Proceedings of the Haifa Workshop on Optimization Theory and Related Topics (Haifa 2010)_, Contemporary Mathematics 568, AMS, Providence, RI, pp. 19-26, 2012. [c12.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c12.pdf)
- H.H. Bauschke, X. Wang, and L. Yao: General resolvents for monotone operators: characterization and extension, _Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems (Huangguoshu 2008)_, Chapter 4, Medical Physics Publishing, 2010. [c11.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c11.pdf)
- H.H. Bauschke and X. Wang: Firmly nonexpansive and Kirszbraun-Valentine extensions: a constructive approach via monotone operator theory, _Nonlinear Analysis and Optimization I (Haifa 2008)_, Contemporary Mathematics 513, AMS, Providence, RI, pp. 55-64, 2010. [c10.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c10.pdf)
- H.H. Bauschke, P.L. Combettes, and J.-C. Pesquet: A decomposition method for nonsmooth convex variational signal recovery, _Proceedings of the 31st IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '06)_, Toulouse, France, May 14-19, 2006. [c09.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c09.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: A new generation of iterative transform algorithms for phase contrast tomography,_Proceedings of the 30th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '05)_, Philadelphia, Pennsylvania, 19-23 March, 2005. [c08.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c08.pdf)
- H.H. Bauschke, P.L. Combettes, and D.R. Luke: On the structure of some phase retrieval problems, _Proceedings of IEEE International Conference on Image Processing (ICIP '02)_, vol.II, pp. 841-844, Rochester, New York, 22-25 September, 2002. [c07.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c07.pdf)
- H.H. Bauschke, C.H. Hamilton, M.S. Macklem, J.S. McMichael, and N.R. Swart: A requantization-based method for recompressing JPEG images, _Proceedings of the 27th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '02)_, vol. III, pp. 2489-2492, Orlando, Florida, 13-17 May, 2002. [c06.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c06.pdf)
- H.H. Bauschke: Projection algorithms: results and open problems,_Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (Haifa 2000)_, D. Butnariu, Y. Censor, S. Reich (editors), Elsevier, pp. 11-22, 2001. [c05.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c05.pdf)
- H.H. Bauschke and J.M. Borwein: Joint and separate convexity of the Bregman distance, _Inherently Parallel Algorithms in Feasibility and Optimization and their Applications (Haifa 2000)_, D. Butnariu, Y. Censor, S. Reich (editors), Elsevier, pp. 23-36, 2001. [c04.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c04.pdf)
- H.H. Bauschke, F. Deutsch, H. Hundal, and S.-H. Park: Fejer monotonicity and weak convergence of an accelerated method of projections, _Constructive, experimental, and nonlinear analysis (Limoges 1999)_, Canadian Mathematical Society Conference Proceedings 27, pp. 1-6, 2000. [c03.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c03.pdf)
- H.H. Bauschke and J.M. Borwein: Conical open mapping theorems and regularity, _Proceedings of the Centre for Mathematics and its Applications 36 (Australian National University 1998)_, pp. 1-10, 1999. [c02.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c02.pdf)
- H.H. Bauschke, J.M. Borwein, and A.S. Lewis: The method of cyclic projections for closed convex sets in Hilbert space, _Recent developments in optimization theory and nonlinear analysis (Jerusalem 1995)_, Contemporary Mathematics 204, pp. 1-38, 1997. [c01.pdf](https://publish-01.obsidian.md/access/2ecc43874ee55b4bcda191e62beb467b/Files/c01.pdf)