quot; we refer to in $\rho_c$ is $\rho = \rho_{M} +\rho_{r} + \rho_{\Lambda}$ - If $\Lambda = 0$ , then the "$\rhoquot; we refer to in $\rho_c$ is $\rho = \rho_{M} +\rho_{r}$ In either case, we express critical density as... $\rho_{c}(t) = \frac{3 H(t)^{2}}{8 \pi G} \hspace{2cm} \rho_{c} = \frac{3 H_{0}^{2}}{8 \pi G} \quad \textcolor{gray}{\simeq 10^{-29} \; \pu{g/cm^{3}} \simeq 10^{-26}\;{\rm kg/m^{3}}}$ Now, for a given section of space with density $\rho$, we can compare that density to the universe's critical density, $\rho_{c}$. - If $\rho > \rho_c$ , that section of space acts like a closed universe; the (mini) universe will eventually stop expanding, and then it will collapse. (see [[Spherical Top Hat Model]]) - If $\rho < \rho_c$ , that section of space acts like an open universe; the (mini) universe will continue expanding forever. This can be discussed in terms of the parameter $\Omega(t):= \rho(t)/\rho_c(t)$ and whether it is larger or smaller than 1. The time-dependence has been made explicit here because when we don't write it, the implication is that it is evaluated at redshift zero ($z=0$). ### With the Cosmological Density Parameters... Using the critical density ($\rho_{c}$), we can now define the **cosmological density parameters**; a set of density ratios comparing the density values of some region in space to the critical density of space at some time ($t$) or redshift ($z$ or $a$). $\Omega_{M}(t) = \frac{\rho_{M}(t)}{\rho_{c}(t)} \hspace{1.2cm} \Omega_{r}(t) = \frac{\rho_{r}(t)}{\rho_{c}(t)} \hspace{1.2cm} \Omega_{k}(t) = \frac{\rho_{k}(t)}{\rho_{c}(t)} \hspace{1.2cm} \Omega_{\Lambda}(t) = \frac{\rho_{\Lambda}(t)}{\rho_{c}(t)}$ $\Omega(t) = \Omega_{M}(t) + \Omega_{r}(t) + \Omega_{k}(t) + \Omega_{\Lambda}(t) = 1$ The current day values are evaluated at $z=0$ ($a=1$). $\begin{alignat}{3} \Omega_{M,0} &= \frac{\rho_{M,0}}{\rho_{c,0}} = \left(\frac{8 \pi G}{3 H_{0}^{2}}\right) \rho_{M,0} &\hspace{2cm} \Omega_{r,0} &= \frac{\rho_{r,0}}{\rho_{c,0}} = \left(\frac{8 \pi G}{3 H_{0}^{2}}\right) \rho_{r,0} \\ \Omega_{k,0} &= \frac{\rho_{k,0}}{\rho_{c,0}} = \frac{- k c^{2}}{H_{0}^{2}} &\hspace{2cm} \Omega_{\Lambda,0} &= \frac{\rho_{\Lambda,0}}{\rho_{c,0}} = \frac{\Lambda c^{2}}{3 H_{0}^{2}} \end{alignat}$ $\Omega_{0} = \Omega_{M,0} + \Omega_{r,0} + \Omega_{k,0} + \Omega_{\Lambda,0} = 1$ > [!note] > When we talk about mean densities of the universe (e.g. [[Question 132]]), we are talking about the **matter** density: $\bar{\rho}(z) = \Omega_{M,0}(1+z)^{3} \rho_{c,0}$, where we write the zeroes explicitly for clarity. With our definition of the Friedmann equation... $H(a)^{2} = \frac{8 \pi G}{3} \bigg( \rho_{M} + \rho_{r} + \underbrace{\frac{3}{8 \pi G} \frac{-k c^{2}}{a^{2}}}_{\rho_{k}} + \underbrace{\frac{\Lambda c^{2}}{8 \pi G}}_{\rho_{\Lambda}} \; \bigg) = \frac{8 \pi G}{3} \underbrace{\left(\rho_{M} + \rho_{r} + \rho_{k} + \rho_{\Lambda} \right)}_{\equiv \, \rho(a)}$ ...we can can compare it to today's values ($z=0$) with the current critical density to re-express the Hubble parameter in terms of these cosmological density parameters. Here, we will define a new function $E(a)$. $E^{2}(a) \equiv \frac{H^{2}(a)}{H_{0}^{2}} = \frac{\rho_{M}(a) + \rho_{r}(a) + \rho_{k}(a) + \rho_{\Lambda}(a)}{\rho_{c,0}} \hspace{1cm} \text{where} \hspace{1cm} H_{0}^{2} = \left(\frac{8 \pi G}{3}\right) \rho_{c,0}$ $E^{2}(a) = \underbrace{\left(\frac{\rho_{M,0}}{\rho_{c,0}}\right)}_{\Omega_{M,0}} (1+z)^{3} + \underbrace{\left(\frac{\rho_{r,0}}{\rho_{c,0}}\right)}_{\Omega_{r,0}} (1+z)^{4} + \underbrace{\left(\frac{\rho_{k,0}}{\rho_{c,0}}\right)}_{\Omega_{k,0}} (1+z)^{2} + \underbrace{\left(\frac{\rho_{\Lambda,0}}{\rho_{c,0}}\right)}_{\Omega_{\Lambda,0}}$ $\boxed{\; \begin{align} H^{2}(a) &= H_{0}^{2} E^{2}(a) \\ E^{2}(a) &= \Omega_{M,0} \, a^{-3} + \Omega_{r,0} \, a^{-4} + \Omega_{k,0} \, a^{-2} + \Omega_{\Lambda,0} \end{align}}$ ${\rm or}$ $\boxed{\; \begin{align} H^{2}(z) &= H_{0}^{2} E^{2}(z) \\ E^{2}(z) &= \Omega_{M,0} \, (1+z)^{3} + \Omega_{r,0} \, (1+z)^{4} + \Omega_{k,0} \, (1+z)^{2} + \Omega_{\Lambda,0} \end{align}}$ > [!note] > > Regarding the source of the redshifts ($a$ and $z$ factors)... > > - For the mass density ($\rho_{M}$), it comes from the volume contribution ($\text{volume}^{-1} \sim a^{-3} \sim (1+z)^{3}$) > - For the radiation density ($\rho_{r}$), it comes from the volume contribution in addition to the redshifting of photons. This gives an extra factor of $a^{-1} \sim (1+z)$. > - For the curvature density ($\rho_{k}$) and cosmological constant density ($\rho_{\Lambda}$), it comes directly from the original Friedmann equation. ## Cosmological Evolution The scale factor $a$ evolves differently over time depending on the "type" of universe (choices of the different $\Omega$) and some common examples are shown in the figure below. $H^{2}(a) = H_{0}^{2} \Big( \Omega_{M,0} \, a^{-3} + \Omega_{r,0} \, a^{-4} + \Omega_{k,0} \, a^{-2} + \Omega_{\Lambda,0} \Big) = \left(\frac{\dot{a}}{a}\right)^{2}$ ![[scale_factor_universe_types.png|align:center|500]] Different terms in the Friedmann equation dominate at different times. - **Radiation Regime** - radiation term $\propto a^{-4} \Longrightarrow$ dominates at very early times $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} \propto a^{-4} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] \dot{a} &\propto a^{-1} \\ a \; \mathrm{d} a &\propto \mathrm{d} t \\ a &\propto t^{1/2} \end{aligned} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] &H(t) = \frac{1}{2t} \\ &t_{0} = \frac{1}{2 H_{0}} \end{aligned}$ - **Matter Regime** - matter term $\propto a^{-3} \Longrightarrow$ dominates at early times $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} \propto a^{-3} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] \dot{a} &\propto a^{-1/2} \\ \sqrt{a} \; \mathrm{d} a &\propto \mathrm{d} t \\ a &\propto t^{2/3} \end{aligned} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] &H(t) = \frac{2}{3t} \\ &t_{0} = \frac{2}{3 H_{0}} \end{aligned}$ - **Curvature Regime** - curvature term $\propto a^{-2} \Longrightarrow$ dominates at medium times $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} \propto a^{-2} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] \dot{a} &\propto {\rm constant} \\ \mathrm{d} a &\propto \mathrm{d} t \\ a &\propto t \end{aligned} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] &H(t) = \frac{1}{t} \\ &t_{0} = \frac{1}{H_{0}} \end{aligned}$ - **$\Lambda$ Regime** - $\Lambda$ term $\propto {\rm constant} \Longrightarrow$ dominates at late times $H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} \propto \left(\frac{\Lambda}{3}\right) \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] \dot{a} &\propto a \sqrt{\frac{\Lambda}{3}} \\ \frac{\mathrm{d} a}{a} &\propto \sqrt{\frac{\Lambda}{3}} \;\mathrm{d} t \\ a &\propto e^{\sqrt{\frac{\Lambda}{3}t}} \end{aligned} \hspace{1cm} \Rightarrow \hspace{1cm} \begin{aligned}[t] &H(t) = \frac{1}{2} \sqrt{\frac{\Lambda}{3 t}} \\ &t_{0} = \frac{1}{4 H_{0}^{2}} \left(\frac{\Lambda}{3}\right) \end{aligned}$ As the universe evolves, it expands at different rates depending on the regime (radiation/matter/$\Lambda$). ![[scalefactor_time.png|align:center|500]]