# Uncertainty Resolution ## Resolution Process ```mermaid graph TB U[Uncertainty] --> |Measure| EN[Entropy] U --> |Drive| IS[Information Seeking] U --> |Guide| AR[Active Resolution] EN --> |Quantifies| UV[Uncertainty Value] IS --> |Generates| AQ[Action Query] AR --> |Executes| A[Action] AQ --> |Selects| A UV --> |Prioritizes| AQ A --> |Obtains| O[Observation] O --> |Reduces| U classDef state fill:#f9f,stroke:#333,stroke-width:2px classDef process fill:#bbf,stroke:#333,stroke-width:2px classDef action fill:#bfb,stroke:#333,stroke-width:2px class U,O state class EN,IS,AR process class AQ,A action ``` ## Information Flow ```mermaid graph LR subgraph Prior B[Beliefs] --> |Entropy| H1[H(s)] end subgraph Posterior O[Observation] --> |Update| BP[Beliefs|Obs] BP --> |Entropy| H2[H(s|o)] end subgraph Reduction H1 --> |Difference| IG[Information Gain] H2 --> |Difference| IG IG --> |Measures| UR[Uncertainty Resolution] end classDef state fill:#f9f,stroke:#333,stroke-width:2px classDef measure fill:#bbf,stroke:#333,stroke-width:2px classDef outcome fill:#bfb,stroke:#333,stroke-width:2px class B,O,BP state class H1,H2,IG measure class UR outcome ``` ## Resolution Dynamics ```mermaid stateDiagram-v2 [*] --> HighUncertainty state "Resolution Process" as RP { HighUncertainty --> InformationGathering InformationGathering --> BeliefUpdate BeliefUpdate --> UncertaintyAssessment state InformationGathering { ActionSelection --> Observation Observation --> InformationProcessing } state UncertaintyAssessment { EntropyComputation --> ThresholdCheck ThresholdCheck --> ResolutionDecision } } RP --> [*]: Resolved ``` ## Active Resolution Strategy ```mermaid graph TD subgraph Assessment U[Uncertainty] --> |Measure| E[Entropy] U --> |Identify| T[Target Areas] end subgraph Planning E --> |Inform| S[Strategy] T --> |Guide| S S --> |Generate| P[Plan] end subgraph Execution P --> |Select| A[Actions] A --> |Execute| O[Observation] O --> |Update| B[Beliefs] end subgraph Evaluation B --> |Assess| R[Resolution] R --> |Update| S end classDef state fill:#f9f,stroke:#333,stroke-width:2px classDef process fill:#bbf,stroke:#333,stroke-width:2px classDef action fill:#bfb,stroke:#333,stroke-width:2px class U,B state class E,T,S,R process class A,O action ``` ## Resolution Metrics ```mermaid graph TD subgraph Measures H[Entropy] --> M[Metrics] I[Information] --> M D[Divergence] --> M end subgraph Analysis M --> |Compute| S[Statistics] M --> |Track| P[Progress] M --> |Assess| E[Efficiency] end subgraph Decisions S --> |Guide| A[Actions] P --> |Update| ST[Strategy] E --> |Optimize| R[Resources] end classDef measure fill:#f9f,stroke:#333,stroke-width:2px classDef process fill:#bbf,stroke:#333,stroke-width:2px classDef decision fill:#bfb,stroke:#333,stroke-width:2px class H,I,D measure class M,S,P,E process class A,ST,R decision ``` ## Mathematical Formulation The uncertainty resolution can be quantified through various measures: 1. **Entropy Reduction** $\Delta H = H(s) - H(s|o)$ - Initial entropy: $H(s) = -\sum_s P(s)\ln P(s)$ - Conditional entropy: $H(s|o) = -\sum_{s,o} P(s,o)\ln P(s|o)$ 1. **Information Gain** $IG = D_{KL}[P(s|o)\|P(s)]$ Links to: - [[entropy]] - Uncertainty measure - [[kl_divergence]] - Divergence measure - [[mutual_information]] - Information measure ## Implementation ```python def compute_uncertainty_resolution( prior: np.ndarray, # Prior distribution P(s) posterior: np.ndarray, # Posterior distribution P(s|o) method: str = 'entropy' # Method to use ) -> float: """Compute uncertainty resolution. Args: prior: Prior probability distribution posterior: Posterior probability distribution method: Method to use ('entropy' or 'kl') Returns: Amount of uncertainty resolved """ if method == 'entropy': prior_entropy = compute_entropy(prior) post_entropy = compute_entropy(posterior) return prior_entropy - post_entropy elif method == 'kl': return compute_kl_divergence(posterior, prior) else: raise ValueError(f"Unknown method: {method}") ``` ## Properties 1. **Non-negativity** - Always reduces uncertainty - Zero for no information gain - Links to [[information_theory_axioms]] 1. **Bounded Reduction** - Limited by initial uncertainty - Asymptotic behavior - Links to [[information_bounds]] 1. **Active Nature** - Requires strategic action selection - Path-dependent resolution - Links to [[active_learning]] ## Related Concepts - [[active_inference]] - Framework - [[information_seeking]] - Strategy - [[optimal_experiment_design]] - Design - [[uncertainty_quantification]] - Measurement - [[information_geometry]] - Geometry ## References - [[friston_2017]] - Active Inference - [[mackay_2003]] - Information Theory - [[lindley_1956]] - Information Measures - [[chaloner_1995]] - Optimal Design ## Visualization Methods ```mermaid graph TD subgraph Uncertainty Landscape U[Uncertainty] --> |Map| L[Landscape] L --> |Identify| H[Hotspots] H --> |Target| A[Actions] end subgraph Resolution Progress A --> |Execute| O[Observation] O --> |Update| B[Beliefs] B --> |Reduce| U U --> |Track| P[Progress] P --> |Visualize| V[Visualization] end subgraph Visualization Types V --> M1[Heatmaps] V --> M2[Trajectories] V --> M3[State Space] V --> M4[Time Series] M1 --> |Show| D1[Distribution] M2 --> |Show| D2[Evolution] M3 --> |Show| D3[Structure] M4 --> |Show| D4[Dynamics] end classDef state fill:#f9f,stroke:#333,stroke-width:2px classDef process fill:#bbf,stroke:#333,stroke-width:2px classDef viz fill:#bfb,stroke:#333,stroke-width:2px class U,B,L state class A,O,P process class M1,M2,M3,M4,V viz ``` ## Visualization Components ```mermaid graph TD subgraph Data Processing D[Data] --> |Extract| F[Features] F --> |Process| M[Metrics] M --> |Prepare| V[Visualization] end subgraph Visual Elements V --> P1[Primary Views] V --> P2[Secondary Views] V --> P3[Auxiliary Views] P1 --> |Main| E1[Entropy Plot] P1 --> |Main| E2[Belief Plot] P2 --> |Support| E3[Action Plot] P2 --> |Support| E4[Progress Plot] P3 --> |Context| E5[History] P3 --> |Context| E6[Statistics] end subgraph Interaction E1 --> |Select| I[Interaction] E2 --> |Select| I E3 --> |Select| I E4 --> |Select| I I --> |Update| V end classDef data fill:#f9f,stroke:#333,stroke-width:2px classDef viz fill:#bbf,stroke:#333,stroke-width:2px classDef interact fill:#bfb,stroke:#333,stroke-width:2px class D,F,M data class V,P1,P2,P3 viz class I,E1,E2,E3,E4,E5,E6 interact ``` ## Implementation Example ```python class UncertaintyVisualizer: """Visualize uncertainty resolution process.""" def __init__(self, resolution_data: Dict[str, np.ndarray]): self.data = resolution_data self.fig = plt.figure(figsize=(15, 10)) self.gs = self.fig.add_gridspec(3, 2) def plot_entropy_evolution(self, ax=None): """Plot entropy reduction over time.""" if ax is None: ax = self.fig.add_subplot(self.gs[0, 0]) time = np.arange(len(self.data['entropy'])) ax.plot(time, self.data['entropy'], 'b-', label='Entropy') ax.set_title('Uncertainty Evolution') ax.set_xlabel('Time Step') ax.set_ylabel('Entropy') ax.grid(True) def plot_belief_landscape(self, ax=None): """Plot belief landscape with uncertainty.""" if ax is None: ax = self.fig.add_subplot(self.gs[0, 1]) belief_grid = self.data['belief_landscape'] im = ax.imshow(belief_grid, cmap='viridis') ax.set_title('Belief Landscape') plt.colorbar(im, ax=ax) def plot_resolution_progress(self, ax=None): """Plot resolution progress metrics.""" if ax is None: ax = self.fig.add_subplot(self.gs[1, :]) metrics = self.data['resolution_metrics'] time = np.arange(len(metrics)) ax.plot(time, metrics, 'r-', label='Resolution') ax.set_title('Resolution Progress') ax.set_xlabel('Time Step') ax.set_ylabel('Resolution Metric') ax.grid(True) def plot_all(self): """Generate complete visualization suite.""" self.plot_entropy_evolution() self.plot_belief_landscape() self.plot_resolution_progress() plt.tight_layout() return self.fig ``` Links to: - [[visualization_guide]] - Visualization standards - [[plotting_utilities]] - Plotting tools - [[interactive_visualization]] - Interactive features ## Visualization Types 1. **Uncertainty Maps** - Heatmaps of belief distribution - Entropy landscapes - Information gain fields - Links to [[spatial_visualization]] 1. **Temporal Evolution** - Resolution trajectories - Convergence plots - Learning curves - Links to [[temporal_visualization]] 1. **State Space Views** - Belief manifolds - Value landscapes - Action trajectories - Links to [[state_space_visualization]] 1. **Interactive Elements** - Selection tools - Filtering options - Dynamic updates - Links to [[interactive_tools]] ## Learning Dynamics ```mermaid graph TD subgraph Resolution Phases P1[Initial Phase] --> |High Uncertainty| L1[Active Learning] L1 --> |Information Gain| U1[Uncertainty Reduction] U1 --> |Progress| P2[Middle Phase] P2 --> |Refined Search| L2[Targeted Learning] L2 --> |Specific Information| U2[Focused Resolution] U2 --> |Convergence| P3[Final Phase] P3 --> |Low Uncertainty| L3[Model Application] L3 --> |Validation| U3[Stability Check] U3 --> |Maintenance| P4[Steady State] end classDef phase fill:#f9f,stroke:#333,stroke-width:4px classDef learning fill:#bbf,stroke:#333,stroke-width:2px classDef state fill:#bfb,stroke:#333,stroke-width:2px class P1,P2,P3,P4 phase class L1,L2,L3 learning class U1,U2,U3 state ``` ## Resolution Framework ```mermaid graph LR subgraph Components U[Uncertainty] --> |Measure| E[Entropy] U --> |Drive| IS[Information Seeking] U --> |Guide| AR[Active Resolution] end subgraph Process E --> |Quantify| UV[Uncertainty Value] IS --> |Generate| AQ[Action Query] AR --> |Execute| A[Action] UV --> |Prioritize| AQ AQ --> |Select| A end subgraph Outcome A --> |Obtain| O[Observation] O --> |Update| B[Beliefs] B --> |Reduce| U end classDef component fill:#f9f,stroke:#333,stroke-width:2px classDef process fill:#bbf,stroke:#333,stroke-width:2px classDef outcome fill:#bfb,stroke:#333,stroke-width:2px class U,E,IS,AR component class UV,AQ,A process class O,B outcome ``` ## Enhanced Relationships ### Core Components - [[information_theory]] - Theoretical foundation - [[active_inference]] - Framework context - [[belief_updating]] - State estimation - [[action_selection]] - Decision making - [[entropy]] - Uncertainty measure ### Resolution Methods - [[information_gain]] - Knowledge acquisition - [[active_learning]] - Strategic learning - [[optimal_experiment_design]] - Query design - [[exploration_strategies]] - Search methods - [[convergence_control]] - Learning stability ### Analysis Tools - [[information_metrics]] - Measurement tools - [[convergence_analysis]] - Learning progress - [[visualization_methods]] - Visual analysis - [[performance_evaluation]] - System assessment - [[statistical_tests]] - Validation methods ### Implementation Aspects - [[numerical_methods]] - Computation tools - [[optimization_algorithms]] - Search techniques - [[probability_distributions]] - Distribution handling - [[computational_efficiency]] - Performance - [[numerical_stability]] - Robustness ## Theoretical Foundations - [[information_geometry]] - Geometric view - [[statistical_inference]] - Learning framework - [[decision_theory]] - Choice framework - [[optimization_theory]] - Search principles - [[learning_dynamics]] - System behavior