# Topology ## Core Concepts ### Topological Spaces 1. **Open Sets** ```math \mathcal{T} \subseteq \mathcal{P}(X) ``` where: - X is set - T is topology - P(X) is power set 2. **Continuity** ```math f^{-1}(U) \in \mathcal{T}_X \text{ for all } U \in \mathcal{T}_Y ``` where: - f: X → Y is function - T_X, T_Y are topologies ### Metric Spaces 1. **Metric** ```math d: X \times X \to \mathbb{R}_{\geq 0} ``` Properties: - d(x,y) = 0 ⟺ x = y - d(x,y) = d(y,x) - d(x,z) ≤ d(x,y) + d(y,z) 2. **Open Balls** ```math B_r(x) = \{y \in X : d(x,y) < r\} ``` where: - r is radius - x is center point ## Advanced Concepts ### Algebraic Topology 1. **Homology Groups** ```math H_n(X) = \text{ker}(\partial_n)/\text{im}(\partial_{n+1}) ``` where: - ∂_n is boundary operator - ker is kernel - im is image 2. **Homotopy Groups** ```math \pi_n(X,x_0) = [(S^n,s_0),(X,x_0)] ``` where: - S^n is n-sphere - [,] is homotopy classes ### Differential Topology 1. **Smooth Manifolds** ```math \text{dim}(T_pM) = n \text{ for all } p \in M ``` where: - T_pM is tangent space - n is dimension 2. **De Rham Cohomology** ```math H^k_{dR}(M) = \text{ker}(d_k)/\text{im}(d_{k-1}) ``` where: - d_k is exterior derivative - ker is kernel - im is image ## Applications ### Manifold Learning 1. **Dimensionality Reduction** ```math \min_f \int_M ||df||^2_g dV_g ``` where: - f is embedding - g is metric - dV_g is volume form 2. **Persistent Homology** ```math \beta_k(ε) = \text{rank}(H_k(X_ε)) ``` where: - β_k is Betti number - X_ε is filtration - H_k is homology group ### Neural Networks 1. **Topological Deep Learning** ```math \mathcal{L}_{\text{top}} = \sum_k w_k|\beta_k(X) - \beta_k(f(X))| ``` where: - β_k are Betti numbers - f is network function - w_k are weights 2. **Manifold Hypothesis** ```math \text{dim}(\mathcal{M}) \ll \text{dim}(\mathcal{X}) ``` where: - M is data manifold - X is ambient space ## Implementation ### Topological Data Analysis ```python class TopologicalAnalyzer: def __init__(self, max_dimension: int = 2, max_radius: float = np.inf): """Initialize topological analyzer. Args: max_dimension: Maximum homology dimension max_radius: Maximum filtration radius """ self.max_dim = max_dimension self.max_radius = max_radius def compute_persistence(self, points: np.ndarray) -> List[Diagram]: """Compute persistent homology. Args: points: Point cloud data Returns: diagrams: Persistence diagrams """ # Compute distance matrix distances = self._pairwise_distances(points) # Build filtration filtration = self._build_vietoris_rips(distances) # Compute persistence diagrams = self._compute_persistence_homology(filtration) return diagrams def compute_betti_numbers(self, diagram: Diagram, threshold: float) -> np.ndarray: """Compute Betti numbers at threshold. Args: diagram: Persistence diagram threshold: Filtration value Returns: betti: Betti numbers """ return self._count_persistent_features(diagram, threshold) ``` ### Manifold Learning ```python class ManifoldLearner: def __init__(self, n_components: int, method: str = 'isomap'): """Initialize manifold learner. Args: n_components: Target dimension method: Learning method """ self.n_components = n_components self.method = method def fit_transform(self, X: np.ndarray) -> np.ndarray: """Learn manifold embedding. Args: X: Input data Returns: Y: Embedded data """ if self.method == 'isomap': return self._isomap_embedding(X) elif self.method == 'locally_linear': return self._locally_linear_embedding(X) else: raise ValueError(f"Unknown method: {self.method}") ``` ## Advanced Topics ### Category Theory 1. **Functors** ```math F: \mathbf{Top} \to \mathbf{Grp} ``` where: - Top is category of topological spaces - Grp is category of groups 2. **Natural Transformations** ```math η: F \Rightarrow G ``` where: - F,G are functors - η is natural transformation ### Sheaf Theory 1. **Sheaf Cohomology** ```math H^n(X,\mathcal{F}) = R^n\Gamma(X,\mathcal{F}) ``` where: - F is sheaf - Γ is global sections - R^n is derived functor 2. **Local Systems** ```math \mathcal{L}_x \cong V \text{ for all } x \in X ``` where: - L is local system - V is vector space ## Future Directions ### Emerging Areas 1. **Applied Topology** - Topological Data Analysis - Computational Topology - Persistent Homology 2. **Higher Category Theory** - ∞-categories - Higher Stacks - Derived Geometry ### Open Problems 1. **Theoretical Challenges** - Geometric Langlands - Mirror Symmetry - Quantum Topology 2. **Practical Challenges** - Algorithm Efficiency - High Dimensions - Feature Selection ## Related Topics 1. [[differential_geometry|Differential Geometry]] 2. [[algebraic_topology|Algebraic Topology]] 3. [[category_theory|Category Theory]] 4. [[sheaf_theory|Sheaf Theory]]