# Probability Theory ## Overview Probability theory provides the mathematical foundation for reasoning under uncertainty, forming the basis for modern approaches to cognitive modeling, machine learning, and statistical inference. ```mermaid graph TD A[Probability Theory] --> B[Measure Theory] A --> C[Statistical Inference] A --> D[Stochastic Processes] B --> E[Integration Theory] B --> F[Measure Spaces] C --> G[Estimation] C --> H[Testing] D --> I[Martingales] D --> J[Diffusions] ``` ### Historical Development ```mermaid timeline title Evolution of Probability Theory section Classical Period 1600s : Pascal & Fermat : Gambling problems 1700s : Bernoulli : Law of large numbers section Modern Era 1900s : Kolmogorov : Axiomatic foundation 1930s : Measure theory integration section Contemporary 1950s : Stochastic processes 2000s : Machine learning applications ``` ## Fundamentals ### Probability Spaces #### Measure Space ```math (\Omega, \mathcal{F}, P) ``` where: - $\Omega$ is sample space - $\mathcal{F}$ is σ-algebra - $P$ is probability measure ```mermaid graph TD A[Sample Space Ω] --> B[Events F] B --> C[Probability Measure P] C --> D[P: F → [0,1]] D --> E[P(Ω) = 1] D --> F[P(∅) = 0] D --> G[Countable Additivity] ``` #### Axioms 1. Non-negativity: $P(A) \geq 0$ 2. Normalization: $P(\Omega) = 1$ 3. Additivity: $P(\cup_i A_i) = \sum_i P(A_i)$ for disjoint sets ### Random Variables #### Definition A measurable function $X: \Omega \rightarrow \mathbb{R}$ ```mermaid graph LR A[Sample Space Ω] -->|X| B[Real Line ℝ] B -->|F_X| C[Probability [0,1]] style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 ``` #### Distribution Function ```math F_X(x) = P(X \leq x) ``` #### Density Function ```math f_X(x) = \frac{d}{dx}F_X(x) ``` ### Probability Diagrams #### Venn Diagrams ```mermaid graph TD subgraph Sample Space A((A)) --- B((B)) A --- C((C)) B --- C end style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 ``` #### Distribution Plots ```python def plot_distributions(): """Plot common probability distributions.""" fig, axes = plt.subplots(2, 2, figsize=(12, 8)) # Normal distribution x = np.linspace(-4, 4, 100) axes[0,0].plot(x, norm.pdf(x, 0, 1)) axes[0,0].set_title('Normal Distribution') # Exponential distribution x = np.linspace(0, 4, 100) axes[0,1].plot(x, expon.pdf(x)) axes[0,1].set_title('Exponential Distribution') # Beta distribution x = np.linspace(0, 1, 100) axes[1,0].plot(x, beta.pdf(x, 2, 5)) axes[1,0].set_title('Beta Distribution') # Gamma distribution x = np.linspace(0, 10, 100) axes[1,1].plot(x, gamma.pdf(x, 2)) axes[1,1].set_title('Gamma Distribution') plt.tight_layout() return fig ``` ## Probability Structures ### Topological Probability Spaces ```mermaid graph LR A[Topology τ] --> B[Borel Sets B] B --> C[Probability P] C --> D[Random Variables] style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 style D fill:#fbf,stroke:#333 ``` #### Polish Spaces ```math \begin{aligned} & \text{Complete Metric Space:} \\ & (X,d) \text{ with Cauchy completion} \\ & \text{Second Countable:} \\ & \exists \text{ countable base for topology} \end{aligned} ``` ### Probability Metrics Space ```mermaid graph TD subgraph Metrics A[Total Variation] --> E[Convergence] B[Wasserstein] --> E C[Hellinger] --> E D[KL Divergence] --> E end style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 style D fill:#fbf,stroke:#333 ``` ### Distribution Hierarchies ```mermaid classDiagram class Distribution { +pdf() +cdf() +sample() } class Continuous { +density() +quantile() } class Discrete { +pmf() +support() } class Exponential { +rate +mean() } Distribution <|-- Continuous Distribution <|-- Discrete Continuous <|-- Exponential ``` ## Advanced Concepts ### Measure-Theoretic Probability #### Integration Theory ```math \mathbb{E}[X] = \int_\Omega X dP = \int_\mathbb{R} x dF_X(x) ``` #### Integration Theory Visualization ```mermaid graph LR A[Simple Functions] -->|Approximate| B[Measurable Functions] B -->|Integrate| C[Lebesgue Integral] C -->|Expectation| D[Probability] ``` #### Product Measures ```math P(A \times B) = (P_1 \otimes P_2)(A \times B) = P_1(A)P_2(B) ``` ### Stochastic Process Structures ```mermaid graph TD subgraph Process Types A[Markov] --> E[Continuous] A --> F[Discrete] B[Martingale] --> G[Local] B --> H[True] C[Lévy] --> I[Jump] C --> J[Continuous] end style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 ``` ### Characteristic Functions #### Definition ```math \phi_X(t) = \mathbb{E}[e^{itX}] = \int_{-\infty}^{\infty} e^{itx}dF_X(x) ``` #### Properties 1. $|\phi_X(t)| \leq 1$ 2. $\phi_X(0) = 1$ 3. $\phi_X(-t) = \overline{\phi_X(t)}$ ### Martingale Theory #### Definition ```math \mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n ``` where $\mathcal{F}_n$ is filtration #### Optional Stopping ```math \mathbb{E}[X_\tau] = \mathbb{E}[X_0] ``` for bounded stopping time $\tau$ ### Ergodic Theory #### Ergodic Theorem ```math \lim_{n \to \infty} \frac{1}{n}\sum_{k=1}^n f(T^k x) = \int_X f d\mu ``` for measure-preserving transformation T #### Mixing Conditions ```math \lim_{n \to \infty} \mu(A \cap T^{-n}B) = \mu(A)\mu(B) ``` ### Large Deviations #### Cramér's Theorem ```math \begin{aligned} & \text{Rate Function:} \\ & I(x) = \sup_{\theta \in \mathbb{R}}(\theta x - \log M(\theta)) \\ & \text{Large Deviation Principle:} \\ & \lim_{n \to \infty} \frac{1}{n}\log P(S_n/n \in A) = -\inf_{x \in A} I(x) \end{aligned} ``` ### Optimal Transport #### Wasserstein Distance ```math W_p(μ,ν) = \left(\inf_{\gamma \in \Gamma(μ,ν)} \int \|x-y\|^p d\gamma(x,y)\right)^{1/p} ``` #### Kantorovich Duality ```math W_1(μ,ν) = \sup_{f: \text{Lip}(f) \leq 1} \int f d(μ-ν) ``` ## Advanced Geometric Structures ### Information Geometry ```mermaid graph LR A[Statistical Manifold] -->|Fisher Metric| B[Riemannian Structure] B -->|α-connections| C[Dual Geometry] C -->|Natural Gradient| D[Optimization] ``` #### Fisher Information Metric ```math \begin{aligned} & g_{ij}(θ) = \mathbb{E}_{p(x|θ)}\left[\frac{∂\log p(x|θ)}{∂θ^i}\frac{∂\log p(x|θ)}{∂θ^j}\right] \\ & \text{Geodesic Equation:} \\ & \ddot{θ}^k + \Gamma^k_{ij}\dot{θ}^i\dot{θ}^j = 0 \end{aligned} ``` ### Optimal Transport Geometry ```mermaid graph TD A[Cost Function] --> B[Transport Plan] B --> C[Wasserstein Distance] C --> D[Geodesics] D --> E[Interpolation] ``` #### Kantorovich Problem ```math \begin{aligned} & \inf_{π \in \Pi(μ,ν)} \int_{X×Y} c(x,y)dπ(x,y) \\ & \text{Subject to:} \\ & π(A×Y) = μ(A), \quad π(X×B) = ν(B) \end{aligned} ``` ## Computational Methods ### MCMC Convergence Diagnostics ```mermaid graph TD subgraph Diagnostics A[Trace Plots] --> E[Convergence] B[Autocorrelation] --> E C[R-hat Statistic] --> E D[ESS] --> E end style A fill:#f9f,stroke:#333 style B fill:#bbf,stroke:#333 style C fill:#bfb,stroke:#333 style D fill:#fbf,stroke:#333 ``` ### Sampling Efficiency ```python class MCMCDiagnostics: def __init__(self, chains: np.ndarray): """Initialize MCMC diagnostics. Args: chains: MCMC chains [n_chains, n_samples, n_params] """ self.chains = chains def plot_diagnostics(self) -> Dict[str, plt.Figure]: """Plot comprehensive diagnostics.""" figs = {} # Trace plots fig_trace = self._plot_traces() figs['trace'] = fig_trace # Autocorrelation fig_acf = self._plot_autocorr() figs['acf'] = fig_acf # Rank plots fig_rank = self._plot_rank() figs['rank'] = fig_rank return figs ``` ## Advanced Visualizations #### Phase Space Plots ```python def plot_phase_space( process: StochasticProcess, n_trajectories: int = 100 ) -> plt.Figure: """Plot phase space of stochastic process.""" fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') for _ in range(n_trajectories): path = process.simulate_path(1000, 0.01) ax.plot3D(path[:,0], path[:,1], path[:,2], alpha=0.1, lw=0.5) return fig ``` #### Distribution Evolution ```python def plot_distribution_evolution( initial: ProbabilityDistribution, transition: Callable, n_steps: int = 10 ) -> plt.Figure: """Plot evolution of probability distribution.""" fig, axes = plt.subplots(2, n_steps//2, figsize=(15, 6)) dist = initial for i in range(n_steps): row, col = i//5, i%5 dist = transition(dist) x = np.linspace(dist.support[0], dist.support[1], 100) axes[row,col].plot(x, dist.pdf(x)) axes[row,col].set_title(f't = {i}') return fig ``` ## Advanced Probability Models ### Lévy Processes ```python class LevyProcess: def __init__(self, characteristic_exponent: Callable, drift: float = 0.0, diffusion: float = 0.0): """Initialize Lévy process. Args: characteristic_exponent: Jump measure drift: Drift parameter diffusion: Diffusion parameter """ self.psi = characteristic_exponent self.mu = drift self.sigma = diffusion def simulate_path(self, n_steps: int, dt: float, method: str = 'euler') -> np.ndarray: """Simulate Lévy process path. Args: n_steps: Number of steps dt: Time step method: Integration method Returns: path: Simulated path """ path = np.zeros(n_steps) time = np.arange(n_steps) * dt # Continuous part W = np.random.normal(0, np.sqrt(dt), n_steps) path += self.mu * time + self.sigma * np.cumsum(W) # Jump part N = self.simulate_jumps(n_steps, dt) path += N return path ``` ### Diffusion Processes ```python class DiffusionProcess: def __init__(self, drift: Callable, diffusion: Callable): """Initialize diffusion process. Args: drift: Drift function μ(x,t) diffusion: Diffusion function σ(x,t) """ self.mu = drift self.sigma = diffusion def simulate_path(self, x0: float, n_steps: int, dt: float, scheme: str = 'milstein') -> np.ndarray: """Simulate diffusion path. Args: x0: Initial value n_steps: Number of steps dt: Time step scheme: Integration scheme Returns: path: Simulated path """ x = np.zeros(n_steps) x[0] = x0 t = np.arange(n_steps) * dt for i in range(n_steps-1): dW = np.random.normal(0, np.sqrt(dt)) if scheme == 'euler': x[i+1] = x[i] + self.mu(x[i],t[i])*dt + \ self.sigma(x[i],t[i])*dW elif scheme == 'milstein': sigma_prime = grad(self.sigma, 0) x[i+1] = x[i] + self.mu(x[i],t[i])*dt + \ self.sigma(x[i],t[i])*dW + \ 0.5*self.sigma(x[i],t[i])*sigma_prime(x[i],t[i])*(dW**2 - dt) return x ``` ### Markov Chain Monte Carlo ```python class MCMCSampler: def __init__(self, target: Callable, proposal: Callable, n_chains: int = 4): """Initialize MCMC sampler. Args: target: Target distribution proposal: Proposal distribution n_chains: Number of parallel chains """ self.target = target self.proposal = proposal self.n_chains = n_chains def hamiltonian_monte_carlo(self, n_samples: int, initial_state: np.ndarray, step_size: float = 0.1, n_steps: int = 10) -> np.ndarray: """Run Hamiltonian Monte Carlo. Args: n_samples: Number of samples initial_state: Initial state step_size: Leapfrog step size n_steps: Number of leapfrog steps Returns: samples: HMC samples """ def hamiltonian(q: np.ndarray, p: np.ndarray) -> float: """Compute Hamiltonian.""" return -self.target(q) + 0.5 * np.sum(p**2) samples = np.zeros((n_samples, *initial_state.shape)) current_q = initial_state for i in range(n_samples): # Sample momentum current_p = np.random.normal(0, 1, size=initial_state.shape) # Leapfrog integration q = current_q p = current_p # Half step for momentum p -= step_size * grad(lambda x: -self.target(x))(q) / 2 # Alternate full steps for position and momentum for _ in range(n_steps): q += step_size * p if _ != n_steps - 1: p -= step_size * grad(lambda x: -self.target(x))(q) # Half step for momentum p -= step_size * grad(lambda x: -self.target(x))(q) / 2 # Metropolis acceptance current_H = hamiltonian(current_q, current_p) proposed_H = hamiltonian(q, p) if np.random.random() < np.exp(current_H - proposed_H): current_q = q samples[i] = current_q return samples ``` ### Sequential Monte Carlo ```python class ParticleFilter: def __init__(self, transition_model: Callable, observation_model: Callable, n_particles: int = 1000): """Initialize particle filter. Args: transition_model: State transition p(x_t|x_{t-1}) observation_model: Observation likelihood p(y_t|x_t) n_particles: Number of particles """ self.f = transition_model self.g = observation_model self.n = n_particles def filter(self, observations: np.ndarray, initial_distribution: Callable) -> Tuple[np.ndarray, np.ndarray]: """Run particle filter. Args: observations: Observation sequence initial_distribution: Initial state distribution Returns: particles,weights: Filtered particles and weights """ T = len(observations) d = observations.shape[1] # Initialize particles particles = np.zeros((T, self.n, d)) weights = np.zeros((T, self.n)) # Initial state particles[0] = initial_distribution(self.n) weights[0] = 1.0 / self.n for t in range(1, T): # Predict particles[t] = self.f(particles[t-1]) # Update weights[t] = self.g(observations[t], particles[t]) weights[t] /= np.sum(weights[t]) # Resample if needed if self.effective_sample_size(weights[t]) < self.n/2: indices = self.systematic_resample(weights[t]) particles[t] = particles[t][indices] weights[t] = 1.0 / self.n return particles, weights @staticmethod def effective_sample_size(weights: np.ndarray) -> float: """Compute effective sample size.""" return 1.0 / np.sum(weights**2) @staticmethod def systematic_resample(weights: np.ndarray) -> np.ndarray: """Perform systematic resampling.""" N = len(weights) positions = (np.random.random() + np.arange(N)) / N indices = np.zeros(N, dtype=int) cumsum = np.cumsum(weights) i, j = 0, 0 while i < N: if positions[i] < cumsum[j]: indices[i] = j i += 1 else: j += 1 return indices ``` ### Advanced Probability Metrics ```python class ProbabilityMetrics: @staticmethod def total_variation(p: np.ndarray, q: np.ndarray) -> float: """Compute total variation distance. Args: p,q: Probability distributions Returns: tv: Total variation distance """ return 0.5 * np.sum(np.abs(p - q)) @staticmethod def hellinger(p: np.ndarray, q: np.ndarray) -> float: """Compute Hellinger distance. Args: p,q: Probability distributions Returns: h: Hellinger distance """ return np.sqrt(0.5 * np.sum((np.sqrt(p) - np.sqrt(q))**2)) @staticmethod def wasserstein(x: np.ndarray, y: np.ndarray, p: int = 1) -> float: """Compute Wasserstein distance. Args: x,y: Sample points p: Order of distance Returns: w: Wasserstein distance """ # Sort samples x_sorted = np.sort(x) y_sorted = np.sort(y) # Compute distance return np.power( np.mean(np.abs(x_sorted - y_sorted)**p), 1/p ) ``` ### Advanced Visualization ```python class ProbabilityVisualizer: @staticmethod def plot_process_paths(paths: np.ndarray, time: np.ndarray, confidence: float = 0.95) -> plt.Figure: """Plot stochastic process paths. Args: paths: Sample paths time: Time points confidence: Confidence level Returns: fig: Plot figure """ fig, ax = plt.subplots(figsize=(10, 6)) # Plot mean path mean_path = np.mean(paths, axis=0) ax.plot(time, mean_path, 'b-', label='Mean') # Plot confidence bands alpha = (1 - confidence) / 2 lower = np.quantile(paths, alpha, axis=0) upper = np.quantile(paths, 1-alpha, axis=0) ax.fill_between(time, lower, upper, alpha=0.2, label=f'{confidence*100}% CI') # Plot sample paths for path in paths[::10]: # Plot every 10th path ax.plot(time, path, 'k-', alpha=0.1) ax.grid(True) ax.legend() return fig @staticmethod def plot_copula(samples: np.ndarray, marginals: List[str] = None) -> plt.Figure: """Plot copula structure. Args: samples: Multivariate samples marginals: Marginal distribution names Returns: fig: Plot figure """ d = samples.shape[1] fig, axes = plt.subplots(d, d, figsize=(3*d, 3*d)) for i in range(d): for j in range(d): if i != j: axes[i,j].scatter(samples[:,j], samples[:,i], alpha=0.1, s=1) else: axes[i,j].hist(samples[:,i], bins=50) if marginals: if i == d-1: axes[i,j].set_xlabel(marginals[j]) if j == 0: axes[i,j].set_ylabel(marginals[i]) plt.tight_layout() return fig ``` ## Advanced Topics ### Optimal Transport Theory - Monge-Kantorovich problem - Wasserstein geometry - Displacement interpolation - Brenier's theorem ### Stochastic Analysis - Itô calculus - Stratonovich integral - Stochastic differential equations - Malliavin calculus ### Information Geometry - Statistical manifolds - Fisher information - α-connections - Amari-Chentsov tensor ### Random Matrix Theory - Wigner matrices - Free probability - Large deviation principles - Tracy-Widom law ## Future Directions ### Quantum Probability - Quantum measure theory - Non-commutative probability - Quantum stochastic processes - Quantum information theory ### Machine Learning Applications - Neural SDEs - Normalizing flows - Score-based generative models - Probabilistic programming ### Theoretical Developments - Rough paths theory - Regularity structures - Geometric measure theory - Optimal transport methods ## Implementation Framework ### Probability Distributions ```python class ProbabilityDistribution: def __init__(self, name: str, params: Dict[str, float]): """Initialize probability distribution. Args: name: Distribution name params: Distribution parameters """ self.name = name self.params = params self._validate_parameters() def pdf(self, x: np.ndarray) -> np.ndarray: """Compute probability density. Args: x: Input values Returns: density: PDF values """ raise NotImplementedError def cdf(self, x: np.ndarray) -> np.ndarray: """Compute cumulative distribution. Args: x: Input values Returns: cumulative: CDF values """ raise NotImplementedError def sample(self, n: int, seed: Optional[int] = None) -> np.ndarray: """Generate random samples. Args: n: Number of samples seed: Random seed Returns: samples: Random samples """ raise NotImplementedError ``` ### Statistical Inference ```python class StatisticalInference: def __init__(self, distribution: ProbabilityDistribution): """Initialize statistical inference. Args: distribution: Probability distribution """ self.dist = distribution def maximum_likelihood(self, data: np.ndarray) -> Dict[str, float]: """Compute MLE estimates. Args: data: Observed data Returns: params: ML parameter estimates """ def neg_log_likelihood(params): self.dist.params = params return -np.sum(np.log(self.dist.pdf(data))) result = minimize(neg_log_likelihood, x0=self.dist.params) return dict(zip(self.dist.params.keys(), result.x)) def bayesian_inference(self, data: np.ndarray, prior: ProbabilityDistribution) -> ProbabilityDistribution: """Perform Bayesian inference. Args: data: Observed data prior: Prior distribution Returns: posterior: Posterior distribution """ # Implement MCMC or variational inference raise NotImplementedError ``` ### Monte Carlo Methods ```python class MonteCarloSampler: def __init__(self, target: Callable, proposal: ProbabilityDistribution): """Initialize Monte Carlo sampler. Args: target: Target distribution proposal: Proposal distribution """ self.target = target self.proposal = proposal def metropolis_hastings(self, n_samples: int, initial: np.ndarray) -> np.ndarray: """Run Metropolis-Hastings algorithm. Args: n_samples: Number of samples initial: Initial state Returns: samples: MCMC samples """ samples = [initial] current = initial for _ in range(n_samples - 1): # Propose new state proposal = self.proposal.sample(1) # Compute acceptance ratio ratio = min(1, self.target(proposal) / self.target(current)) # Accept/reject if np.random.random() < ratio: current = proposal samples.append(current) return np.array(samples) ``` ## Advanced Applications ### Information Theory ```python class InformationTheory: @staticmethod def entropy(p: np.ndarray) -> float: """Compute Shannon entropy. Args: p: Probability distribution Returns: H: Entropy value """ return -np.sum(p * np.log2(p + 1e-10)) @staticmethod def kl_divergence(p: np.ndarray, q: np.ndarray) -> float: """Compute KL divergence. Args: p: First distribution q: Second distribution Returns: KL: KL divergence """ return np.sum(p * np.log2((p + 1e-10) / (q + 1e-10))) @staticmethod def mutual_information(joint: np.ndarray) -> float: """Compute mutual information. Args: joint: Joint distribution Returns: I: Mutual information """ p_x = np.sum(joint, axis=1) p_y = np.sum(joint, axis=0) H_x = InformationTheory.entropy(p_x) H_y = InformationTheory.entropy(p_y) H_xy = InformationTheory.entropy(joint.flatten()) return H_x + H_y - H_xy ``` ### Stochastic Processes ```python class StochasticProcess: def __init__(self, transition: Callable, initial: ProbabilityDistribution): """Initialize stochastic process. Args: transition: Transition kernel initial: Initial distribution """ self.transition = transition self.initial = initial def simulate_path(self, n_steps: int, dt: float) -> np.ndarray: """Simulate process path. Args: n_steps: Number of steps dt: Time step Returns: path: Simulated path """ path = [self.initial.sample(1)] for _ in range(n_steps - 1): next_state = self.transition(path[-1], dt) path.append(next_state) return np.array(path) ``` ## Visualization Tools ### Distribution Plots ```python def plot_distribution_family( dist_class: Type[ProbabilityDistribution], param_range: Dict[str, np.ndarray] ) -> plt.Figure: """Plot family of distributions. Args: dist_class: Distribution class param_range: Parameter ranges Returns: fig: Plot figure """ fig, ax = plt.subplots(figsize=(10, 6)) x = np.linspace(-4, 4, 100) for params in product(*param_range.values()): dist = dist_class(dict(zip(param_range.keys(), params))) ax.plot(x, dist.pdf(x), label=str(params)) ax.legend() ax.grid(True) return fig ``` ### Probability Maps ```python def plot_probability_map( joint_dist: np.ndarray, x_label: str = 'X', y_label: str = 'Y' ) -> plt.Figure: """Plot joint probability map. Args: joint_dist: Joint distribution x_label: X-axis label y_label: Y-axis label Returns: fig: Plot figure """ fig, ax = plt.subplots(figsize=(8, 8)) im = ax.imshow(joint_dist, cmap='viridis') plt.colorbar(im) ax.set_xlabel(x_label) ax.set_ylabel(y_label) return fig ``` ## Best Practices ### Implementation 1. Use log-space computations 2. Implement numerical stability 3. Validate probability axioms 4. Handle edge cases 5. Use vectorized operations 6. Implement error checking ### Modeling 1. Choose appropriate distributions 2. Validate assumptions 3. Consider conjugate priors 4. Test inference methods 5. Use cross-validation 6. Monitor convergence ### Computation 1. Use stable algorithms 2. Implement vectorization 3. Handle numerical precision 4. Validate results 5. Use efficient data structures 6. Implement caching ## Common Issues ### Numerical Stability 1. Underflow/overflow 2. Division by zero 3. Log of zero 4. Precision loss 5. Floating-point errors 6. Catastrophic cancellation ### Solutions 1. Log-space arithmetic 2. Stable algorithms 3. Numerical safeguards 4. Error checking 5. Regularization 6. Robust implementations ## Related Topics - [[measure_theory|Measure Theory]] - [[information_theory|Information Theory]] - [[statistics|Statistics]] - [[bayesian_inference|Bayesian Inference]] - [[stochastic_processes|Stochastic Processes]] - [[statistical_learning|Statistical Learning]] - [[random_variables|Random Variables]] - [[probability_distributions|Probability Distributions]] ## References 1. [[kolmogorov_1933]] - "Foundations of the Theory of Probability" 2. [[feller_1968]] - "An Introduction to Probability Theory and Its Applications" 3. [[billingsley_1995]] - "Probability and Measure" 4. [[durrett_2019]] - "Probability: Theory and Examples" 5. [[williams_1991]] - "Probability with Martingales" 6. [[kallenberg_2002]] - "Foundations of Modern Probability"