# Poisson Geometry ## Core Concepts ### Poisson Manifolds 1. **Poisson Bracket** ```math \{f,g\}: C^\infty(M) \times C^\infty(M) \to C^\infty(M) ``` Properties: - Antisymmetry: {f,g} = -{g,f} - Leibniz: {f,gh} = {f,g}h + g{f,h} - Jacobi: {f,{g,h}} + {g,{h,f}} + {h,{f,g}} = 0 2. **Poisson Bivector** ```math π = \frac{1}{2}π^{ij}\frac{∂}{∂x^i} ∧ \frac{∂}{∂x^j} ``` where: - π^{ij} are structure functions - ∧ is wedge product ### Hamiltonian Systems 1. **Hamiltonian Vector Field** ```math X_f = π^\sharp(df) = \{f,-\} ``` where: - π^\sharp is sharp map - df is differential 2. **Dynamics** ```math \dot{x} = \{x,H\} = π^\sharp(dH) ``` where: - H is Hamiltonian - x are coordinates ## Advanced Concepts ### Poisson Reduction 1. **Momentum Map** ```math J: M \to \mathfrak{g}^*, \quad ⟨J(x),ξ⟩ = J_ξ(x) ``` where: - g* is Lie coalgebra - J_ξ is moment function 2. **Reduced Bracket** ```math \{f,g\}_{\text{red}}([x]) = \{F,G\}(x) ``` where: - F,G are extensions - [x] is equivalence class ### Symplectic Foliation 1. **Characteristic Distribution** ```math C_x = \text{Im}(π^\sharp_x) \subset T_xM ``` where: - π^\sharp is sharp map - T_xM is tangent space 2. **Symplectic Leaves** ```math (S,ω_S): \quad ω_S(X_f,X_g) = \{f,g\} ``` where: - S is leaf - ω_S is symplectic form ## Implementation ### Poisson Structure Computations ```python class PoissonManifold: def __init__(self, dimension: int, bivector: Callable): """Initialize Poisson manifold. Args: dimension: Manifold dimension bivector: Poisson bivector field """ self.dim = dimension self.pi = bivector self._validate_jacobi_identity() def poisson_bracket(self, f: Callable, g: Callable, point: np.ndarray) -> float: """Compute Poisson bracket. Args: f,g: Functions on manifold point: Evaluation point Returns: bracket: {f,g} at point """ # Get differentials df = self._compute_differential(f, point) dg = self._compute_differential(g, point) # Contract with bivector return self._contract_with_bivector(df, dg, point) def hamiltonian_vector_field(self, f: Callable, point: np.ndarray) -> np.ndarray: """Compute Hamiltonian vector field. Args: f: Function on manifold point: Base point Returns: X_f: Vector field at point """ # Get differential df = self._compute_differential(f, point) # Apply sharp map return self._sharp_map(df, point) ``` ### Reduction Theory ```python class PoissonReduction: def __init__(self, poisson_manifold: PoissonManifold, group_action: GroupAction): """Initialize Poisson reduction. Args: poisson_manifold: Manifold group_action: Lie group action """ self.manifold = poisson_manifold self.action = group_action def momentum_map(self, point: np.ndarray) -> np.ndarray: """Compute momentum map. Args: point: Point on manifold Returns: J: Momentum map value """ # Get infinitesimal generators generators = self.action.get_generators(point) # Compute moment functions return self._compute_momentum(generators, point) def reduce(self, level: np.ndarray) -> PoissonManifold: """Perform Poisson reduction. Args: level: Momentum level Returns: reduced: Reduced Poisson manifold """ # Get level set level_set = self._compute_level_set(level) # Compute quotient return self._compute_quotient(level_set) ``` ## Advanced Applications ### Deformation Quantization ```python class DeformationQuantization: def __init__(self, poisson_manifold: PoissonManifold, formal_parameter: Symbol): """Initialize deformation quantization. Args: poisson_manifold: Classical phase space formal_parameter: Planck constant """ self.manifold = poisson_manifold self.hbar = formal_parameter def star_product(self, f: Callable, g: Callable, order: int) -> Expression: """Compute star product. Args: f,g: Functions to multiply order: Expansion order Returns: product: f * g up to order """ # Compute bidifferential operators operators = self._compute_bidifferential_operators(order) # Sum expansion return self._sum_star_product(f, g, operators) def verify_associativity(self, f: Callable, g: Callable, h: Callable, order: int) -> bool: """Verify associativity equations. Args: f,g,h: Test functions order: Verification order Returns: associative: Whether equations hold """ return self._check_associativity(f, g, h, order) ``` ### Quantum Groups ```python class QuantumGroup: def __init__(self, lie_bialgebra: LieBialgebra, deformation_parameter: Symbol): """Initialize quantum group. Args: lie_bialgebra: Classical structure deformation_parameter: q-parameter """ self.bialgebra = lie_bialgebra self.q = deformation_parameter def quantize_structure(self) -> HopfAlgebra: """Quantize Lie bialgebra. Returns: quantum: Quantum group """ # Compute universal R-matrix R = self._compute_R_matrix() # Construct coproduct Delta = self._construct_coproduct(R) # Build Hopf algebra return self._construct_hopf_algebra(Delta, R) def classical_limit(self, element: AlgebraElement) -> LieElement: """Compute classical limit. Args: element: Quantum group element Returns: classical: Classical limit """ return self._take_classical_limit(element) ``` ## Advanced Topics ### Lie Bialgebras 1. **Cobracket** ```math δ: \mathfrak{g} \to \mathfrak{g} ∧ \mathfrak{g} ``` where: - g is Lie algebra - δ is 1-cocycle 2. **Double** ```math \mathfrak{d} = \mathfrak{g} ⊕ \mathfrak{g}^* ``` where: - g* is dual algebra - d is double ### Integrable Systems 1. **Casimir Functions** ```math \{C,f\} = 0 \text{ for all } f ``` where: - C is Casimir - {,} is Poisson bracket 2. **Bi-Hamiltonian Structure** ```math π_1, π_2: \quad [π_1,π_2] = 0 ``` where: - π_i are Poisson structures - [,] is Schouten bracket ## Future Directions ### Emerging Areas 1. **Higher Structures** - Higher Poisson Geometry - Derived Poisson Geometry - Graded Poisson Manifolds 2. **Applications** - Quantum Field Theory - String Theory - Noncommutative Geometry ### Open Problems 1. **Theoretical Challenges** - Formality Conjecture - Integration Problem - Quantization Program 2. **Computational Challenges** - Star Product Construction - R-matrix Computation - Deformation Theory ## Related Topics 1. [[symplectic_geometry|Symplectic Geometry]] 2. [[quantum_groups|Quantum Groups]] 3. [[deformation_quantization|Deformation Quantization]] 4. [[integrable_systems|Integrable Systems]]