# Information Geometry ## Overview Information Geometry studies the geometric structure of probability distributions and statistical models. It provides a rigorous mathematical framework for understanding statistical inference, machine learning, and active inference through the lens of differential geometry. ## Mathematical Foundation ### 1. Statistical Manifold ```math \mathcal{M} = \{p_θ : θ ∈ Θ\} ``` where: - M is the manifold of probability distributions - θ are the parameters - Θ is the parameter space ### 2. Fisher Information Metric ```math g_{ij}(θ) = \mathbb{E}_{p_θ}\left[\frac{∂\log p_θ}{∂θ^i}\frac{∂\log p_θ}{∂θ^j}\right] ``` ### 3. α-Connections ```math Γ_{ijk}^{(α)} = \mathbb{E}_{p_θ}\left[\frac{∂^2\log p_θ}{∂θ^j∂θ^k}\frac{∂\log p_θ}{∂θ^i} + \frac{1-α}{2}\frac{∂\log p_θ}{∂θ^i}\frac{∂\log p_θ}{∂θ^j}\frac{∂\log p_θ}{∂θ^k}\right] ``` ## Core Components ### 1. [[statistical_manifolds|Statistical Manifolds]] ```julia struct StatisticalManifold{T<:Distribution} # Dimension of parameter space dim::Int # Parameter space Θ::AbstractVector{Float64} # Distribution family family::Type{T} # Metric tensor g::Function # Connection coefficients Γ::Function end function compute_metric(manifold::StatisticalManifold, θ::Vector{Float64}) n = manifold.dim g = zeros(n, n) for i in 1:n, j in 1:n g[i,j] = expectation(manifold.family(θ)) do x ∂i = ∂log_likelihood(x, θ, i) ∂j = ∂log_likelihood(x, θ, j) ∂i * ∂j end end return g end ``` ### 2. [[natural_gradient|Natural Gradient]] ```julia struct NaturalGradient # Manifold manifold::StatisticalManifold # Learning rate η::Float64 end function update!(grad::NaturalGradient, θ::Vector{Float64}, ∇L::Vector{Float64}) # Compute Fisher information matrix G = compute_metric(grad.manifold, θ) # Compute natural gradient ∇̃L = G \ ∇L # Update parameters return θ - grad.η * ∇̃L end ``` ### 3. [[geodesics|Geodesics]] ```julia function compute_geodesic(manifold::StatisticalManifold, θ₀::Vector{Float64}, θ̇₀::Vector{Float64}, T::Float64, dt::Float64) # Initialize trajectory ts = 0:dt:T θs = Vector{Vector{Float64}}(undef, length(ts)) θs[1] = θ₀ # Integrate geodesic equation for i in 1:length(ts)-1 # Current state θ = θs[i] # Compute Christoffel symbols Γ = manifold.Γ(θ) # Update velocity θ̇ = θ̇₀ - 0.5 * sum(Γ .* θ̇₀ .* θ̇₀) # Update position θs[i+1] = θ + dt * θ̇ end return ts, θs end ``` ## Applications ### 1. [[variational_inference|Variational Inference]] ```julia function natural_variational_inference(manifold::StatisticalManifold, target::Distribution, q_init::Distribution) # Initialize variational parameters θ = parameters(q_init) # Natural gradient descent for iter in 1:max_iters # Compute ELBO gradient ∇ELBO = compute_elbo_gradient(q_init, target) # Natural gradient update θ = update!(NaturalGradient(manifold, 0.01), θ, ∇ELBO) # Update variational distribution q_init = manifold.family(θ) end return q_init end ``` ### 2. [[active_inference|Active Inference]] ```julia function information_geometric_policy_selection( manifold::StatisticalManifold, agent::ActiveInferenceAgent) # Generate policies policies = generate_policies(agent) # Compute geodesic distances to preferred states distances = Float64[] for π in policies # Predicted distribution p_pred = predict_distribution(agent, π) # Compute geodesic distance d = geodesic_distance(manifold, p_pred, agent.preferences) push!(distances, d) end return policies[argmin(distances)] end ``` ### 3. [[exponential_families|Exponential Families]] ```julia struct ExponentialFamily # Sufficient statistics T::Vector{Function} # Log-partition function A::Function # Base measure h::Function function natural_parameters(η::Vector{Float64}) # Compute moment parameters μ = ∇A(η) # Compute Fisher information G = ∇²A(η) return μ, G end end function compute_divergence(ef::ExponentialFamily, p::Distribution, q::Distribution) # Get natural parameters η_p = natural_parameters(p) η_q = natural_parameters(q) # Compute Bregman divergence return ef.A(η_q) - ef.A(η_p) - dot(∇A(η_p), η_q - η_p) end ``` ## Theoretical Results ### 1. [[dually_flat|Dually Flat Structure]] ```julia struct DuallyFlatManifold <: StatisticalManifold # Potential function ψ::Function # Dual potential φ::Function # Legendre transform ∇ψ::Function ∇φ::Function function divergence(self, p::Distribution, q::Distribution) # Compute Bregman divergence η_p = natural_parameters(p) η_q = natural_parameters(q) return self.ψ(η_q) - self.ψ(η_p) - dot(self.∇ψ(η_p), η_q - η_p) end end ``` ### 2. [[information_projection|Information Projection]] ```julia function e_projection(manifold::StatisticalManifold, p::Distribution, constraint::Function) # Initialize parameters θ = parameters(p) # Minimize KL divergence subject to constraint for iter in 1:max_iters # Compute gradient ∇KL = compute_kl_gradient(p, manifold.family(θ)) # Project gradient onto constraint surface ∇proj = project_gradient(∇KL, constraint) # Update parameters θ = update!(NaturalGradient(manifold, 0.01), θ, ∇proj) end return manifold.family(θ) end ``` ### 3. [[cramer_rao|Cramér-Rao Bounds]] ```julia function cramer_rao_bound(manifold::StatisticalManifold, estimator::Function) # Compute Fisher information G = compute_metric(manifold, θ) # Compute estimator covariance Σ = cov(estimator) # Check Cramér-Rao inequality return is_positive_definite(Σ - inv(G)) end ``` ## Best Practices ### 1. Implementation - Use stable numerical methods - Implement efficient tensor operations - Cache geometric quantities - Handle singularities ### 2. Optimization - Monitor metric regularity - Adapt learning rates - Check geodesic stability - Validate projections ### 3. Validation - Test with known geometries - Verify invariance properties - Check bound satisfaction - Monitor convergence ## References 1. Amari, S. I. (2016). Information Geometry and Its Applications 2. Ay, N., et al. (2017). Information Geometry 3. Nielsen, F. (2020). An Elementary Introduction to Information Geometry 4. Cencov, N. N. (1982). Statistical Decision Rules and Optimal Inference 5. Lebanon, G. (2005). Information Geometry, the Embedding Principle, and Document Classification