# Geometric Active Inference ## Overview Geometric Active Inference provides a differential geometric framework for understanding active inference and the free energy principle. This approach reveals deep connections between information geometry, symplectic geometry, and optimal control theory. ## Geometric Structures ### 1. Statistical Manifolds #### Definition ```math (\mathcal{M}, g, \nabla^{(\alpha)}, \nabla^{(-\alpha)}) ``` where: - $\mathcal{M}$ is manifold of probability distributions - $g$ is Fisher-Rao metric - $\nabla^{(\alpha)}$ are dual connections #### Fisher-Rao Metric ```math g_{ij}(\theta) = \int p_\theta(x) \frac{\partial \log p_\theta(x)}{\partial \theta^i} \frac{\partial \log p_\theta(x)}{\partial \theta^j} dx ``` ### 2. Belief Space Geometry #### Tangent Space ```math T_p\mathcal{M} = \text{span}\left\{\frac{\partial}{\partial \theta^i}\right\}_{i=1}^n ``` #### Cotangent Space ```math T^*_p\mathcal{M} = \text{span}\{d\theta^i\}_{i=1}^n ``` ### 3. Symplectic Structure #### Canonical Form ```math \omega = \sum_i dp^i \wedge dq^i ``` where: - $p^i$ are momenta - $q^i$ are coordinates #### Hamiltonian Flow ```math \dot{q}^i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q^i} ``` ## Geometric Free Energy ### 1. Free Energy as Action #### Action Functional ```math S[q] = \int_0^T \left(g_{ij}\dot{\theta}^i\dot{\theta}^j + F(q_\theta)\right)dt ``` where: - $F(q_\theta)$ is variational free energy - $g_{ij}$ is Fisher metric #### Euler-Lagrange Equations ```math \frac{d}{dt}\frac{\partial L}{\partial \dot{\theta}^i} - \frac{\partial L}{\partial \theta^i} = 0 ``` ### 2. Natural Gradient Flow #### Gradient Flow ```math \dot{\theta}^i = -g^{ij}\frac{\partial F}{\partial \theta^j} ``` #### Parallel Transport ```math \nabla_{\dot{\gamma}}\dot{\gamma} = 0 ``` ## Geometric Policy Selection ### 1. Policy Manifold #### Structure ```math \mathcal{P} = \{P_\pi : \pi \in \Pi\} ``` where: - $P_\pi$ is policy distribution - $\Pi$ is policy space #### Metric ```math h_{ij}(\pi) = \mathbb{E}_{P_\pi}\left[\frac{\partial \log P_\pi}{\partial \pi^i}\frac{\partial \log P_\pi}{\partial \pi^j}\right] ``` ### 2. Expected Free Energy #### Geometric Form ```math G(\pi) = \int_{\mathcal{M}} g_{ij}(\theta)\dot{\theta}^i\dot{\theta}^j d\mu(\theta) ``` #### Policy Update ```math \dot{\pi}^i = -h^{ij}\frac{\partial G}{\partial \pi^j} ``` ## Implementation ### 1. Geometric Integration ```python class GeometricIntegrator: def __init__(self, manifold: RiemannianManifold, hamiltonian: Callable): """Initialize geometric integrator. Args: manifold: Riemannian manifold hamiltonian: Hamiltonian function """ self.M = manifold self.H = hamiltonian def symplectic_euler(self, q: np.ndarray, p: np.ndarray, dt: float) -> Tuple[np.ndarray, np.ndarray]: """Perform symplectic Euler step. Args: q: Position coordinates p: Momentum coordinates dt: Time step Returns: q_next,p_next: Updated coordinates """ # Update momentum grad_H = self.compute_gradient(self.H, q) p_next = p - dt * grad_H # Update position q_next = q + dt * p_next return q_next, p_next def parallel_transport(self, v: np.ndarray, gamma: Geodesic, t: float) -> np.ndarray: """Parallel transport vector along geodesic. Args: v: Tangent vector gamma: Geodesic curve t: Parameter value Returns: v_t: Transported vector """ # Compute connection coefficients Gamma = self.M.christoffel_symbols(gamma(t)) # Solve parallel transport equation v_t = self.solve_transport_equation(v, gamma, Gamma, t) return v_t ``` ### 2. Natural Gradient Methods ```python class NaturalGradientOptimizer: def __init__(self, manifold: StatisticalManifold, learning_rate: float = 0.1): """Initialize natural gradient optimizer. Args: manifold: Statistical manifold learning_rate: Learning rate """ self.M = manifold self.lr = learning_rate def compute_natural_gradient(self, theta: np.ndarray, grad_F: np.ndarray) -> np.ndarray: """Compute natural gradient. Args: theta: Parameters grad_F: Euclidean gradient Returns: nat_grad: Natural gradient """ # Compute Fisher information G = self.M.fisher_metric(theta) # Solve metric equation nat_grad = np.linalg.solve(G, grad_F) return nat_grad def update_parameters(self, theta: np.ndarray, grad_F: np.ndarray) -> np.ndarray: """Update parameters using natural gradient. Args: theta: Current parameters grad_F: Euclidean gradient Returns: theta_next: Updated parameters """ # Compute natural gradient nat_grad = self.compute_natural_gradient(theta, grad_F) # Update parameters theta_next = self.M.exp_map( theta, -self.lr * nat_grad ) return theta_next ``` ### 3. Geometric Policy Optimization ```python class GeometricPolicyOptimizer: def __init__(self, policy_manifold: RiemannianManifold, efe_function: Callable): """Initialize geometric policy optimizer. Args: policy_manifold: Policy manifold efe_function: Expected free energy """ self.P = policy_manifold self.G = efe_function def optimize_policy(self, pi_init: np.ndarray, n_steps: int = 100, learning_rate: float = 0.1) -> np.ndarray: """Optimize policy using geometric methods. Args: pi_init: Initial policy n_steps: Number of steps learning_rate: Learning rate Returns: pi_opt: Optimized policy """ pi = pi_init.copy() for _ in range(n_steps): # Compute EFE gradient grad_G = self.compute_efe_gradient(pi) # Compute policy metric h = self.P.metric_tensor(pi) # Update policy nat_grad = np.linalg.solve(h, grad_G) pi = self.P.exp_map(pi, -learning_rate * nat_grad) return pi ``` ## Applications ### 1. Geometric Control - Optimal transport - Path planning - Trajectory optimization - Feedback control ### 2. Information Processing - Belief propagation - Message passing - Information geometry - Statistical inference ### 3. Learning Theory - Natural gradient descent - Information bottleneck - Geometric deep learning - Manifold learning ## Best Practices ### 1. Geometric Methods 1. Preserve invariants 2. Use natural coordinates 3. Implement symplectic integrators 4. Handle parallel transport ### 2. Numerical Stability 1. Monitor geodesic distance 2. Check metric positivity 3. Regularize curvature 4. Control step size ### 3. Implementation 1. Efficient tensor operations 2. Adaptive discretization 3. Geometric integration 4. Parallel computation ## Common Issues ### 1. Technical Challenges 1. Coordinate singularities 2. Metric degeneracy 3. Geodesic completeness 4. Computational complexity ### 2. Solutions 1. Multiple charts 2. Regularization 3. Adaptive methods 4. Efficient algorithms ## Related Topics - [[differential_geometry]] - [[information_geometry]] - [[symplectic_geometry]] - [[optimal_control]] - [[path_integral_free_energy]] - [[variational_methods]]