# Free Energy Principle
## Overview
The Free Energy Principle (FEP) is a unifying theory that explains how biological systems maintain their organization in the face of environmental fluctuations. It proposes that all self-organizing adaptive systems minimize "variational free energy"—a statistical quantity that bounds the surprise (or self-information) associated with sensory signals. Through this minimization, organisms implicitly resist the natural tendency toward disorder described by the second law of thermodynamics.
Mathematically, the FEP states that biological systems minimize a functional $F[q]$ that represents the upper bound on surprise:
```math
F[q] = \mathbb{E}_q[\ln q(s) - \ln p(s,o)]
```
where:
- $q(s)$ is a recognition density over internal states $s$
- $p(s,o)$ is a generative model relating internal states $s$ to observations $o$
The principle has broad applications across cognitive neuroscience, artificial intelligence, and biological self-organization.
```mermaid
graph TD
subgraph "Free Energy Principle"
A[Variational Free Energy] --> B[Perception]
A --> C[Learning]
A --> D[Action]
B --> E[State Estimation]
C --> F[Model Parameter Updates]
D --> G[Active Inference]
E --> H[Reduction of Perceptual Prediction Error]
F --> I[Reduction of Model Complexity]
G --> J[Reduction of Expected Surprise]
end
style A fill:#f9d,stroke:#333
style B fill:#adf,stroke:#333
style C fill:#adf,stroke:#333
style D fill:#adf,stroke:#333
```
## Historical Context and Development
### Origins and Evolution
The Free Energy Principle emerged from the intersection of thermodynamics, information theory, and neuroscience, developed primarily by Karl Friston in the early 2000s:
```mermaid
timeline
title Evolution of the Free Energy Principle
section Conceptual Foundations
1950s-60s : Cybernetics : Ashby's homeostasis, self-organizing systems
1970s-80s : Information Theory : Shannon's entropy, Jaynes' maximum entropy principle
section Neuroscientific Roots
1990s : Predictive Coding : Rao & Ballard's hierarchical predictive coding
1995-2000 : Bayesian Brain : Helmholtz's unconscious inference revival
section Formal Development
2003-2005 : First FEP Papers : Friston's initial mathematical formulation
2006-2010 : Connection to Variational Bayes : Formal link to machine learning
section Extensions
2010-2015 : Active Inference : Extension to action and behavior
2016-2020 : Physics Connections : Statistical physics, non-equilibrium steady states
section Current Directions
2020-Present : Markov Blankets : Formal boundary conditions for systems
2021-Present : New Mathematics : Stochastic differential equations, information geometry
```
### Key Contributors
1. **Karl Friston**: Principal architect who formalized the Free Energy Principle
1. **Geoffrey Hinton**: Developed related concepts in Helmholtz Machines
1. **Anil Seth**: Extended FEP to interoceptive processing and consciousness
1. **Maxwell Ramstead**: Applied FEP to social systems and cultural dynamics
1. **Christopher Buckley**: Connected FEP to control theory
1. **Thomas Parr**: Developed hierarchical implementations
1. **Lancelot Da Costa**: Advanced mathematical formulations using stochastic calculus
### Intellectual Lineage
The Free Energy Principle integrates several intellectual traditions:
- **Helmholtz's Unconscious Inference**: The idea that perception is a form of unconscious statistical inference
- **Ashby's Cybernetics**: Concepts of homeostasis and self-organization
- **Jaynes' Maximum Entropy Principle**: Using entropy maximization subject to constraints
- **Feynman's Path Integrals**: Statistical mechanics approaches to understanding systems
- **Pearl's Causality**: Causal modeling through graphical models
## Mathematical Foundation
### Variational Free Energy
Variational free energy is formally defined as:
```math
F[q] = \mathbb{E}_q[\ln q(s) - \ln p(s,o)]
```
This can be decomposed in several ways:
```math
\begin{aligned}
F[q] &= \mathbb{E}_q[\ln q(s) - \ln p(s|o) - \ln p(o)] \\
&= D_{\mathrm{KL}}[q(s) \| p(s|o)] - \ln p(o) \\
&= \underbrace{\mathbb{E}_q[-\ln p(o|s)]}_{\text{accuracy}} + \underbrace{D_{\mathrm{KL}}[q(s) \| p(s)]}_{\text{complexity}}
\end{aligned}
```
where:
- $D_{\mathrm{KL}}$ is the Kullback-Leibler divergence
- $p(o)$ is the marginal likelihood or evidence
- $p(s|o)$ is the true posterior distribution
### Decomposition
The FEP can be decomposed into different components representing accuracy and complexity:
```math
\begin{aligned}
\text{Accuracy} &= \mathbb{E}_q[-\ln p(o|s)] \\
\text{Complexity} &= D_{\mathrm{KL}}[q(s) \| p(s)]
\end{aligned}
```
This decomposition reveals a fundamental trade-off: minimizing free energy requires balancing model fit (accuracy) against model complexity.
### Alternative Forms
Free energy can also be expressed in terms of energy and entropy:
```math
F[q] = \mathbb{E}_q[E(s,o)] - H[q(s)]
```
where:
- $E(s,o) = -\ln p(s,o)$ is the energy function
- $H[q(s)] = -\mathbb{E}_q[\ln q(s)]$ is the entropy of the recognition density
## Information Geometry Perspective
### Geometry of Free Energy
The Free Energy Principle can be understood through the lens of information geometry, where variational inference corresponds to optimization on a statistical manifold:
```math
\begin{aligned}
\delta F[q] &= \int \frac{\delta F}{\delta q(s)} \delta q(s) ds \\
&= \int \left(\ln q(s) - \ln p(s,o) + 1 \right) \delta q(s) ds
\end{aligned}
```
For parametric distributions $q_\theta(s)$ with parameters $\theta$, we can write:
```math
\frac{\partial F}{\partial \theta_i} = \mathbb{E}_q\left[\frac{\partial \ln q_\theta(s)}{\partial \theta_i}\left(\ln q_\theta(s) - \ln p(s,o)\right)\right]
```
### Fisher Information and Natural Gradients
Optimization in information geometry often uses the Fisher information matrix:
```math
\mathcal{G}_{ij} = \mathbb{E}_q\left[\frac{\partial \ln q_\theta(s)}{\partial \theta_i}\frac{\partial \ln q_\theta(s)}{\partial \theta_j}\right]
```
Leading to natural gradient descent:
```math
\Delta \theta = -\eta \mathcal{G}^{-1}\nabla_\theta F
```
where $\eta$ is a learning rate. This approach respects the Riemannian geometry of the probability simplex and can accelerate convergence.
### Connections to Optimal Transport
Recent work connects the FEP to optimal transport theory and Wasserstein gradients:
```math
\partial_t q_t = \nabla \cdot (q_t \nabla \delta F/\delta q)
```
This formulation reveals free energy minimization as a gradient flow on the space of probability measures.
## Connections to Statistical Physics
### Thermodynamic Interpretation
The Free Energy Principle has deep connections to statistical physics and thermodynamics:
```math
\begin{aligned}
F_{\text{thermo}} &= U - TS \\
F_{\text{variational}} &= \mathbb{E}_q[E] - H[q]
\end{aligned}
```
Where:
- $F_{\text{thermo}}$ is thermodynamic free energy
- $U$ is internal energy
- $T$ is temperature
- $S$ is entropy
- $F_{\text{variational}}$ is variational free energy
- $E$ is an energy function
- $H[q]$ is entropy of $q$
### Non-equilibrium Steady States
A more recent formulation connects the FEP to non-equilibrium steady states (NESS):
```math
\nabla \cdot (q(x) \nabla E(x)) = 0
```
Where $q(x)$ is a probability density function over states $x$ and $E(x)$ is a potential function. In the context of the FEP, biological systems are conceptualized as maintaining a characteristic probability distribution over their states.
### Principle of Least Action
The FEP can also be connected to the principle of least action via path integrals:
```math
q^*(x(t)) = \frac{1}{Z} \exp\left(-\int_0^T \mathcal{L}(x(t), \dot{x}(t)) dt\right)
```
Where $\mathcal{L}$ is a Lagrangian function and $Z$ is a normalizing constant. This formulation provides a bridge between the FEP and theoretical physics.
## Advanced Mathematical Formulations
### Stochastic Differential Equations
The FEP can be formulated using stochastic differential equations:
```math
\begin{aligned}
dx &= (f(x) + Q\partial_x\ln p(x))dt + \sqrt{2Q}dW \\
dp &= (-\partial_xH)dt + \sqrt{2R}dW
\end{aligned}
```
where:
- $f(x)$ is the drift function
- $Q$ and $R$ are diffusion matrices
- $dW$ is a Wiener process
- $H$ is the Hamiltonian
### Path Integral Formulation
The path integral perspective connects FEP to quantum mechanics:
```math
\begin{aligned}
p(x(T)|x(0)) &= \int \mathcal{D}[x]e^{-S[x]} \\
S[x] &= \int_0^T dt\left(\frac{1}{2}|\dot{x} - f(x)|^2 + V(x)\right)
\end{aligned}
```
where:
- $\mathcal{D}[x]$ is the path integral measure
- $S[x]$ is the action functional
- $V(x)$ is the potential function
### Information Geometric Extensions
Using the language of information geometry:
```math
\begin{aligned}
g_{ij}(\theta) &= \mathbb{E}_{p(x|\theta)}\left[\frac{\partial \ln p(x|\theta)}{\partial \theta^i}\frac{\partial \ln p(x|\theta)}{\partial \theta^j}\right] \\
\Gamma_{ijk}^{(α)} &= \mathbb{E}\left[\frac{\partial^2 \ln p}{\partial \theta^i\partial \theta^j}\frac{\partial \ln p}{\partial \theta^k}\right] \\
\nabla_\theta F &= g^{ij}(\theta)\frac{\partial F}{\partial \theta^j}
\end{aligned}
```
## Implementation Framework
### Variational Methods
```python
class FreeEnergyModel:
def __init__(self,
state_dim: int,
obs_dim: int):
"""Initialize free energy model.
Args:
state_dim: State dimension
obs_dim: Observation dimension
"""
self.state_dim = state_dim
self.obs_dim = obs_dim
# Initialize distributions
self.q = VariationalDistribution(state_dim)
self.p = GenerativeModel(state_dim, obs_dim)
def compute_free_energy(self,
obs: torch.Tensor) -> torch.Tensor:
"""Compute variational free energy.
Args:
obs: Observations
Returns:
F: Free energy value
"""
# Get variational parameters
mu, log_var = self.q.get_parameters()
# Compute KL divergence
kl_div = -0.5 * torch.sum(
1 + log_var - mu.pow(2) - log_var.exp()
)
# Compute expected log likelihood
expected_llh = self.p.expected_log_likelihood(
obs, mu, log_var
)
return kl_div - expected_llh
def update(self,
obs: torch.Tensor,
lr: float = 0.01) -> None:
"""Update model parameters.
Args:
obs: Observations
lr: Learning rate
"""
# Compute free energy
F = self.compute_free_energy(obs)
# Compute gradients
F.backward()
# Update parameters
with torch.no_grad():
for param in self.parameters():
param -= lr * param.grad
param.grad.zero_()
```
### Markov Blanket Implementation
```python
class MarkovBlanket:
def __init__(self,
internal_dim: int,
blanket_dim: int,
external_dim: int):
"""Initialize Markov blanket.
Args:
internal_dim: Internal state dimension
blanket_dim: Blanket state dimension
external_dim: External state dimension
"""
self.internal_dim = internal_dim
self.blanket_dim = blanket_dim
self.external_dim = external_dim
# Initialize states
self.internal = torch.zeros(internal_dim)
self.blanket = torch.zeros(blanket_dim)
self.external = torch.zeros(external_dim)
def update_internal(self,
blanket_state: torch.Tensor) -> None:
"""Update internal states given blanket."""
self.internal = self._compute_internal_update(
self.internal, blanket_state
)
def update_blanket(self,
internal_state: torch.Tensor,
external_state: torch.Tensor) -> None:
"""Update blanket states."""
self.blanket = self._compute_blanket_update(
internal_state, self.blanket, external_state
)
def _compute_internal_update(self,
internal: torch.Tensor,
blanket: torch.Tensor) -> torch.Tensor:
"""Compute internal state update."""
# Implement specific update rule
return internal
def _compute_blanket_update(self,
internal: torch.Tensor,
blanket: torch.Tensor,
external: torch.Tensor) -> torch.Tensor:
"""Compute blanket state update."""
# Implement specific update rule
return blanket
```
### MCMC Sampling
```python
class MCMCSampler:
def __init__(self,
target_distribution: Callable,
proposal_distribution: Callable):
"""Initialize MCMC sampler.
Args:
target_distribution: Target distribution
proposal_distribution: Proposal distribution
"""
self.target = target_distribution
self.proposal = proposal_distribution
def sample(self,
initial_state: torch.Tensor,
n_samples: int) -> torch.Tensor:
"""Generate samples using MCMC.
Args:
initial_state: Initial state
n_samples: Number of samples
Returns:
samples: Generated samples
"""
current_state = initial_state
samples = [current_state]
for _ in range(n_samples):
# Propose new state
proposal = self.proposal(current_state)
# Compute acceptance ratio
ratio = self.target(proposal) / self.target(current_state)
# Accept/reject
if torch.rand(1) < ratio:
current_state = proposal
samples.append(current_state)
return torch.stack(samples)
```
## Advanced Applications
### 1. Biological Systems
```mermaid
graph TD
subgraph "Biological Self-Organization"
A[Free Energy Minimization] --> B[Homeostasis]
A --> C[Autopoiesis]
A --> D[Adaptive Behavior]
B --> E[Metabolic Regulation]
C --> F[Self-maintenance]
D --> G[Learning and Evolution]
end
style A fill:#f9f,stroke:#333
style B fill:#bbf,stroke:#333
style D fill:#bfb,stroke:#333
```
### 2. Cognitive Systems
```mermaid
graph LR
subgraph "Cognitive Architecture"
A[Sensory Input] --> B[Prediction Error]
B --> C[Belief Update]
C --> D[Action Selection]
D --> E[Environmental Change]
E --> A
C --> F[Model Update]
F --> B
end
style A fill:#f9f,stroke:#333
style C fill:#bbf,stroke:#333
style D fill:#bfb,stroke:#333
```
### 3. Artificial Systems
```mermaid
graph TD
subgraph "AI Applications"
A[Free Energy Principle] --> B[Neural Networks]
A --> C[Robotics]
A --> D[Reinforcement Learning]
B --> E[Deep Learning]
C --> F[Control Systems]
D --> G[Decision Making]
end
style A fill:#f9f,stroke:#333
style B fill:#bbf,stroke:#333
style D fill:#bfb,stroke:#333
```
## Future Directions
### Emerging Research Areas
1. **Quantum Extensions**
- Quantum Free Energy
- Quantum Information Geometry
- Quantum Active Inference
1. **Complex Systems**
- Collective Behavior
- Network Dynamics
- Emergence and Criticality
1. **Machine Learning**
- Deep Free Energy Models
- Variational Autoencoders
- Generative Models
### Open Problems
1. **Theoretical Challenges**
- Exact vs. Approximate Inference
- Non-equilibrium Dynamics
- Scale Separation
1. **Practical Challenges**
- Computational Tractability
- Model Selection
- Real-world Applications
## Criticisms and Limitations
### Technical Critiques
1. **Mathematical Tractability**: Exact free energy minimization is often intractable in complex models.
1. **Linearity Assumptions**: Many implementations rely on linear or weakly nonlinear approximations.
1. **Discrete vs. Continuous Time**: Reconciling discrete and continuous time formulations remains challenging.
1. **Identifiability Issues**: Different generative models can yield identical behavioral predictions.
### Conceptual Critiques
1. **Circularity Concerns**: Critics argue the theory risks being unfalsifiable by explaining everything.
1. **Missing Mechanistic Details**: The abstract nature can obscure specific neural mechanisms.
1. **Teleological Interpretations**: Confusion between "as if" optimization and goal-directed behavior.
1. **Scale Problems**: Applying the principle across vastly different scales (from cells to societies) raises questions.
### Empirical Challenges
1. **Experimental Design**: Testing FEP directly is challenging due to its mathematical abstraction.
1. **Parameter Identification**: Identifying model parameters from empirical data can be difficult.
1. **Competing Explanations**: Alternative theories sometimes provide simpler explanations for the same phenomena.
## Recent Extensions and Developments
### Non-equilibrium Steady States
Recent formulations cast the FEP in terms of non-equilibrium steady states using stochastic differential equations:
```math
dx = f(x)dt + \sigma(x)dW
```
where $x$ represents the system state, $f(x)$ is a drift function, $\sigma(x)$ is a diffusion coefficient, and $dW$ is a Wiener process.
### Particular Physics
The "particular physics" formulation grounds the FEP in specific physical principles:
```math
\begin{aligned}
\dot{p}(x,t) &= -\nabla \cdot (f(x)p(x,t)) + \frac{1}{2}\nabla^2 \cdot (D(x)p(x,t)) \\
&= -\nabla \cdot (f(x)p(x,t) - \nabla \cdot (D(x)p(x,t)))
\end{aligned}
```
where $p(x,t)$ is a probability density function, $f(x)$ is a flow field, and $D(x)$ is a diffusion tensor.
### Symmetry Breaking
Recent work connects the FEP to symmetry breaking in physics:
```math
\mathcal{L}(g \cdot x) = \mathcal{L}(x) \quad \forall g \in G
```
where $\mathcal{L}$ is a Lagrangian, $g$ is a group element, and $G$ is a group of transformations. The emergence of Markov blankets is viewed as a form of symmetry breaking.
### Dynamic Causal Modeling
Extensions to Dynamic Causal Modeling (DCM) allow empirical testing of FEP predictions:
```math
\dot{x} = f(x,u,\theta) + w
```
where $u$ are inputs, $\theta$ are parameters, and $w$ is noise. DCM enables system identification from time series data.
## Philosophical Implications
### Epistemology
The FEP has profound implications for epistemology:
1. **Knowledge as Model**: Suggests knowledge is embodied in probabilistic models.
1. **Bayesian Brain**: Positions the brain as a Bayesian inference machine.
1. **Umwelt**: Each organism constructs its own model-based reality.
### Metaphysics
Several metaphysical consequences follow from the FEP:
1. **Mind-Body Problem**: Offers a naturalistic account of mind as inference.
1. **Causality**: Reframes causation in terms of generative models.
1. **Emergence**: Provides a mathematical account of how higher-order properties emerge.
### Ethics and Aesthetics
The FEP has been extended to consider:
1. **Value**: Framing value in terms of expected free energy minimization.
1. **Aesthetics**: Suggesting beauty might relate to successful prediction.
1. **Social Dynamics**: Modeling social cohesion as shared free energy minimization.
## Theoretical Results
### Fisher Information and Cramér-Rao Bound
The FEP connects to fundamental results in information theory:
```math
\text{Var}(\hat{\theta}) \geq \frac{1}{\mathcal{I}(\theta)}
```
where $\mathcal{I}(\theta)$ is the Fisher information. This relates to the precision with which parameters can be estimated.
### Markov Blanket Conditions
For a system with states partitioned into internal states $\mu$ and external states $\eta$, the Markov blanket $b$ must satisfy:
```math
p(\mu | \eta, b) = p(\mu | b)
```
This condition ensures that internal states are conditionally independent of external states, given the blanket states.
### Path Integral Formulation
The path of least action in state space can be formulated as:
```math
q^*(x_{0:T}) = \frac{1}{Z}p(x_0)\exp\left(-\int_0^T \mathcal{L}(x, \dot{x})dt\right)
```
where $\mathcal{L}(x, \dot{x})$ is a Lagrangian and $Z$ is a normalizing constant.
### Marginal Stability
Systems at non-equilibrium steady states exhibit marginal stability:
```math
\lambda_{\max}(J) \approx 0
```
where $\lambda_{\max}(J)$ is the maximum eigenvalue of the Jacobian matrix of the dynamics. This relates to critical slowing near bifurcation points.
## Best Practices
### Model Design
1. Choose appropriate state space dimensionality
1. Structure hierarchical dependencies
1. Design informative priors
1. Balance model complexity
1. Test with simulated data
### Implementation
1. Handle numerical stability issues
1. Choose appropriate approximation methods
1. Validate with synthetic data
1. Benchmark against standard methods
1. Implement efficient matrix operations
```python
def compute_fisher_metric(model, q_samples, n_samples=1000):
"""Compute Fisher information metric for a model.
Args:
model: Probabilistic model
q_samples: Parameter samples
n_samples: Number of samples
Returns:
fisher_metric: Fisher information matrix
"""
n_params = q_samples.shape[1]
fisher_metric = np.zeros((n_params, n_params))
# Compute score function for each sample
scores = np.zeros((n_samples, n_params))
for i in range(n_samples):
params = q_samples[i]
# Compute gradients of log probability
for j in range(n_params):
# Finite difference approximation
eps = 1e-5
params_plus = params.copy()
params_plus[j] += eps
params_minus = params.copy()
params_minus[j] -= eps
log_p_plus = model.log_prob(params_plus)
log_p_minus = model.log_prob(params_minus)
scores[i, j] = (log_p_plus - log_p_minus) / (2 * eps)
# Compute outer product of scores
for i in range(n_samples):
outer_product = np.outer(scores[i], scores[i])
fisher_metric += outer_product
fisher_metric /= n_samples
return fisher_metric
```
### Validation
1. Check convergence of optimization
1. Analyze sensitivity to hyperparameters
1. Compare with alternative models
1. Test edge cases
1. Evaluate generalization performance
## Related Documentation
- [[active_inference]]
- [[variational_inference]]
- [[bayesian_brain_hypothesis]]
- [[markov_blanket]]
- [[predictive_coding]]
- [[information_theory]]
- [[statistical_physics]]
- [[self_organization]]
- [[autopoiesis]]
## Quantum Extensions
### Quantum Free Energy Principle
The quantum extension of FEP uses quantum probability theory:
```math
\begin{aligned}
\text{Quantum State:} \quad |\psi\rangle &= \sum_s \sqrt{q(s)}|s\rangle \\
\text{Density Matrix:} \quad \rho &= |\psi\rangle\langle\psi| \\
\text{Quantum Free Energy:} \quad F_Q &= \text{Tr}(\rho H) + \text{Tr}(\rho \ln \rho)
\end{aligned}
```
### Quantum Information Geometry
```math
\begin{aligned}
\text{Quantum Fisher Information:} \quad g_{ij}^Q &= \text{Re}(\text{Tr}(\rho L_i L_j)) \\
\text{SLD Operators:} \quad L_i &= 2\frac{\partial \rho}{\partial \theta^i} \\
\text{Quantum Relative Entropy:} \quad S(\rho\|\sigma) &= \text{Tr}(\rho(\ln \rho - \ln \sigma))
\end{aligned}
```
### Implementation Framework
```python
class QuantumFreeEnergy:
def __init__(self,
hilbert_dim: int,
hamiltonian: np.ndarray):
"""Initialize quantum free energy system.
Args:
hilbert_dim: Dimension of Hilbert space
hamiltonian: System Hamiltonian
"""
self.dim = hilbert_dim
self.H = hamiltonian
def compute_quantum_free_energy(self,
state_vector: np.ndarray) -> float:
"""Compute quantum free energy.
Args:
state_vector: Quantum state vector
Returns:
F_Q: Quantum free energy
"""
# Compute density matrix
rho = np.outer(state_vector, state_vector.conj())
# Energy term
energy = np.trace(rho @ self.H)
# von Neumann entropy
entropy = -np.trace(rho @ np.log(rho))
return energy + entropy
```
## Advanced Mathematical Structures
### Category Theory Framework
```mermaid
graph TD
subgraph "Categorical FEP"
A[State Space Category] --> B[Observable Category]
B --> C[Measurement Category]
C --> D[Inference Category]
D --> A
E[Free Energy Functor] --> F[Natural Transformation]
F --> G[Adjoint Functors]
end
style A fill:#f9f,stroke:#333
style E fill:#bbf,stroke:#333
style G fill:#bfb,stroke:#333
```
### Differential Forms and Symplectic Structure
```math
\begin{aligned}
\text{Symplectic Form:} \quad \omega &= \sum_i dp_i \wedge dq_i \\
\text{Hamiltonian Vector Field:} \quad X_H &= \omega^{-1}(dH) \\
\text{Liouville Form:} \quad \theta &= \sum_i p_i dq_i
\end{aligned}
```
### Lie Group Actions
```math
\begin{aligned}
\text{Group Action:} \quad \Phi: G \times M &\to M \\
\text{Momentum Map:} \quad J: T^*M &\to \mathfrak{g}^* \\
\text{Coadjoint Orbit:} \quad \mathcal{O}_\mu &= \{Ad^*_g\mu : g \in G\}
\end{aligned}
```
## Advanced Implementation Frameworks
### Deep Free Energy Networks
```python
class DeepFreeEnergyNetwork(nn.Module):
def __init__(self,
state_dim: int,
obs_dim: int,
latent_dim: int):
"""Initialize deep free energy network."""
super().__init__()
# Recognition network
self.recognition = nn.Sequential(
nn.Linear(obs_dim, 256),
nn.ReLU(),
nn.Linear(256, 2 * latent_dim) # Mean and log variance
)
# Generative network
self.generative = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.ReLU(),
nn.Linear(256, obs_dim)
)
# State transition network
self.dynamics = nn.Sequential(
nn.Linear(latent_dim, 256),
nn.ReLU(),
nn.Linear(256, latent_dim)
)
def encode(self,
x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode observations to latent space."""
h = self.recognition(x)
mu, log_var = torch.chunk(h, 2, dim=-1)
return mu, log_var
def decode(self,
z: torch.Tensor) -> torch.Tensor:
"""Decode latent states to observations."""
return self.generative(z)
def transition(self,
z: torch.Tensor) -> torch.Tensor:
"""Predict next latent state."""
return self.dynamics(z)
def compute_free_energy(self,
x: torch.Tensor,
z: torch.Tensor,
mu: torch.Tensor,
log_var: torch.Tensor) -> torch.Tensor:
"""Compute variational free energy."""
# Reconstruction term
x_recon = self.decode(z)
recon_loss = F.mse_loss(x_recon, x, reduction='none')
# KL divergence term
kl_div = -0.5 * torch.sum(
1 + log_var - mu.pow(2) - log_var.exp(),
dim=1
)
return recon_loss.sum(dim=1) + kl_div
```
### Markov Blanket Analysis
```python
class MarkovBlanketAnalyzer:
def __init__(self,
n_variables: int,
threshold: float = 0.1):
"""Initialize Markov blanket analyzer."""
self.n_vars = n_variables
self.threshold = threshold
def identify_blanket(self,
data: np.ndarray) -> Dict[str, np.ndarray]:
"""Identify Markov blanket structure.
Args:
data: Time series data (samples × variables)
Returns:
partitions: Dictionary of partitioned variables
"""
# Compute correlation matrix
corr = np.corrcoef(data.T)
# Threshold to get adjacency matrix
adj = (np.abs(corr) > self.threshold).astype(int)
# Find strongly connected components
components = self._find_components(adj)
# Identify internal, blanket, and external states
internal = self._identify_internal(components)
blanket = self._identify_blanket(adj, internal)
external = self._identify_external(internal, blanket)
return {
'internal': internal,
'blanket': blanket,
'external': external
}
```
## Advanced Applications
### 1. Biological Systems
```mermaid
graph TD
subgraph "Biological Free Energy"
A[Cellular Dynamics] --> B[Metabolic Networks]
B --> C[Gene Regulation]
C --> D[Protein Synthesis]
D --> E[Cellular State]
E --> A
end
style A fill:#f9f,stroke:#333
style C fill:#bbf,stroke:#333
style E fill:#bfb,stroke:#333
```
### 2. Neural Systems
```mermaid
graph LR
subgraph "Neural Free Energy"
A[Sensory Input] --> B[Prediction Errors]
B --> C[State Estimation]
C --> D[Parameter Updates]
D --> E[Synaptic Weights]
E --> F[Neural Activity]
F --> A
end
style A fill:#f9f,stroke:#333
style C fill:#bbf,stroke:#333
style E fill:#bfb,stroke:#333
```
### 3. Social Systems
```mermaid
graph TD
subgraph "Social Free Energy"
A[Individual Beliefs] --> B[Social Interactions]
B --> C[Cultural Norms]
C --> D[Collective Behavior]
D --> E[Environmental Change]
E --> A
end
style A fill:#f9f,stroke:#333
style C fill:#bbf,stroke:#333
style D fill:#bfb,stroke:#333
```
## Computational Complexity Analysis
### Time Complexity
1. **Belief Updates**: $O(d^3)$ for $d$-dimensional state space
1. **Free Energy Computation**: $O(d^2)$ for matrix operations
1. **Markov Blanket Identification**: $O(n^2)$ for $n$ variables
### Space Complexity
1. **State Representation**: $O(d)$ for state vectors
1. **Covariance Matrices**: $O(d^2)$ for precision matrices
1. **Model Parameters**: $O(d^2)$ for transition matrices
### Optimization Methods
1. **Gradient Descent**: $O(kd^2)$ for $k$ iterations
1. **Natural Gradient**: $O(kd^3)$ with Fisher information
1. **Variational EM**: $O(kd^3)$ for full covariance
## Best Practices
### Model Design
1. Choose appropriate state space dimensionality
1. Design informative priors
1. Structure hierarchical dependencies
1. Balance model complexity
1. Implement efficient numerics
### Implementation
1. Use stable matrix operations
1. Handle numerical precision
1. Implement parallel computation
1. Monitor convergence
1. Validate results
### Validation
1. Test with synthetic data
1. Compare with baselines
1. Cross-validate results
1. Analyze sensitivity
1. Benchmark performance
## Future Research Directions
### Theoretical Developments
1. **Quantum Extensions**: Quantum probability theory
1. **Category Theory**: Functorial relationships
1. **Information Geometry**: Wasserstein metrics
### Practical Advances
1. **Scalable Algorithms**: Large-scale systems
1. **Neural Implementation**: Brain-inspired architectures
1. **Real-world Applications**: Complex systems
### Open Problems
1. **Non-equilibrium Dynamics**: Far-from-equilibrium systems
1. **Scale Separation**: Multiple time scales
1. **Emergence**: Collective phenomena
## Markov Blanket Theory
### Formal Definition
```math
\begin{aligned}
& \text{Markov Blanket Partition:} \\
& \mathcal{S} = \{η, s, a, μ\} \\
& \text{where:} \\
& η: \text{external states} \\
& s: \text{sensory states} \\
& a: \text{active states} \\
& μ: \text{internal states}
\end{aligned}
```
### Conditional Independence
```mermaid
graph TD
subgraph "Markov Blanket Structure"
E[External States η] --> S[Sensory States s]
S --> I[Internal States μ]
I --> A[Active States a]
A --> E
S --> A
end
style E fill:#f9f,stroke:#333
style S fill:#bbf,stroke:#333
style I fill:#bfb,stroke:#333
style A fill:#fbb,stroke:#333
```
### Statistical Properties
```math
\begin{aligned}
& \text{Conditional Independence:} \\
& P(η|s,a,μ) = P(η|s,a) \\
& P(μ|s,a,η) = P(μ|s,a) \\
& \text{Flow:} \\
& \dot{x} = f(x) + ω \\
& \text{where } x = [η,s,a,μ]^T
\end{aligned}
```
## Technical Derivations
### Free Energy Decomposition
```math
\begin{aligned}
F &= \mathbb{E}_q[\log q(s) - \log p(o,s)] \\
&= \mathbb{E}_q[\log q(s) - \log p(s|o) - \log p(o)] \\
&= D_{KL}[q(s)||p(s|o)] - \log p(o) \\
&= \underbrace{D_{KL}[q(s)||p(s|o)]}_{\text{accuracy}} + \underbrace{\mathbb{E}_q[\log q(s)]}_{\text{complexity}}
\end{aligned}
```
### Variational Principle
```mermaid
graph TD
subgraph "Free Energy Minimization"
F[Free Energy] --> A[Accuracy Term]
F --> C[Complexity Term]
A --> P[Prediction Error]
C --> R[Model Complexity]
P --> M[Model Update]
R --> M
M --> F
end
style F fill:#f9f,stroke:#333
style M fill:#bfb,stroke:#333
```
### Path Integral Formulation
```math
\begin{aligned}
& \text{Action:} \\
& S[q] = \int_0^T \mathcal{L}(q,\dot{q})dt \\
& \text{Lagrangian:} \\
& \mathcal{L}(q,\dot{q}) = F[q] + \frac{1}{2}\dot{q}^T\Gamma\dot{q} \\
& \text{Hamilton's Equations:} \\
& \dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}
\end{aligned}
```
## Mathematical Foundations
### Information Geometry
```math
\begin{aligned}
& \text{Fisher Metric:} \\
& g_{ij}(θ) = \mathbb{E}_p\left[\frac{\partial \log p}{\partial θ^i}\frac{\partial \log p}{\partial θ^j}\right] \\
& \text{Natural Gradient:} \\
& \dot{θ} = -g^{ij}\frac{\partial F}{\partial θ^j} \\
& \text{Geodesic Flow:} \\
& \ddot{θ}^k + \Gamma^k_{ij}\dot{θ}^i\dot{θ}^j = 0
\end{aligned}
```
### Differential Geometry
```mermaid
graph TD
subgraph "Geometric Structure"
M[Statistical Manifold] --> T[Tangent Bundle]
M --> C[Connection]
T --> G[Geodesics]
C --> P[Parallel Transport]
G --> F[Free Energy Flow]
P --> F
end
style M fill:#f9f,stroke:#333
style F fill:#bfb,stroke:#333
```
### Stochastic Processes
```math
\begin{aligned}
& \text{Langevin Dynamics:} \\
& dx = f(x)dt + σdW \\
& \text{Fokker-Planck Equation:} \\
& \frac{\partial p}{\partial t} = -\nabla \cdot (fp) + \frac{1}{2}\nabla^2(Dp) \\
& \text{Path Integral:} \\
& p(x_T|x_0) = \int \mathcal{D}[x]e^{-S[x]}
\end{aligned}
```
```python
def compute_fisher_metric(model, q_samples, n_samples=1000):
"""Compute Fisher information metric for a model.
Args:
model: Probabilistic model
q_samples: Parameter samples
n_samples: Number of samples
Returns:
fisher_metric: Fisher information matrix
"""
n_params = q_samples.shape[1]
fisher_metric = np.zeros((n_params, n_params))
# Compute score function for each sample
scores = np.zeros((n_samples, n_params))
for i in range(n_samples):
params = q_samples[i]
# Compute gradients of log probability
for j in range(n_params):
# Finite difference approximation
eps = 1e-5
params_plus = params.copy()
params_plus[j] += eps
params_minus = params.copy()
params_minus[j] -= eps
log_p_plus = model.log_prob(params_plus)
log_p_minus = model.log_prob(params_minus)
scores[i, j] = (log_p_plus - log_p_minus) / (2 * eps)
# Compute outer product of scores
for i in range(n_samples):
outer_product = np.outer(scores[i], scores[i])
fisher_metric += outer_product
fisher_metric /= n_samples
return fisher_metric
```
### Validation
1. Check convergence of optimization
1. Analyze sensitivity to hyperparameters
1. Compare with alternative models
1. Test edge cases
1. Evaluate generalization performance
## Non-Equilibrium Statistical Mechanics Extensions
### Theoretical Framework
**Definition** (Non-Equilibrium Steady State): A system state where currents flow but macroscopic properties remain constant:
$\langle\dot{X}\rangle = 0, \quad \text{but} \quad \langle J_i \rangle \neq 0$
where $J_i$ are probability currents and $X$ represents macroscopic observables.
**Theorem** (Fluctuation-Dissipation Relations): For systems near equilibrium, the response to perturbations is related to spontaneous fluctuations:
$\chi(\omega) = \frac{1}{k_B T} \int_0^\infty \langle\delta X(t)\delta X(0)\rangle e^{-i\omega t} dt$
```python
class NonEquilibriumFreeEnergy:
"""Non-equilibrium extensions of the free energy principle."""
def __init__(self,
temperature: float,
dissipation_rate: float,
external_driving: Callable[[float], np.ndarray]):
"""Initialize non-equilibrium system.
Args:
temperature: System temperature (energy scale)
dissipation_rate: Rate of energy dissipation
external_driving: Time-dependent external forces
"""
self.kT = temperature
self.gamma = dissipation_rate
self.external_force = external_driving
def compute_entropy_production_rate(self,
state: np.ndarray,
probability_current: np.ndarray) -> float:
"""Compute entropy production rate for non-equilibrium system.
The entropy production rate quantifies irreversibility:
dS/dt = ∫ J(x) · ∇ ln P(x) dx ≥ 0
Args:
state: Current system state
probability_current: Probability current J(x)
Returns:
Entropy production rate
"""
# Compute probability gradient
prob_gradient = self._compute_probability_gradient(state)
# Entropy production as current-force product
entropy_production = np.sum(probability_current * prob_gradient / self.kT)
return max(0, entropy_production) # Non-negative by second law
def compute_nonequilibrium_free_energy(self,
beliefs: np.ndarray,
time: float) -> Dict[str, float]:
"""Compute free energy including non-equilibrium contributions.
F_neq = F_eq + F_driving + F_dissipation
where:
- F_eq is equilibrium free energy
- F_driving accounts for external driving
- F_dissipation accounts for dissipative processes
Args:
beliefs: Current belief distribution
time: Current time
Returns:
Complete non-equilibrium free energy decomposition
"""
# Equilibrium component
F_eq = self._compute_equilibrium_free_energy(beliefs)
# Driving contribution
external_work = self._compute_driving_contribution(beliefs, time)
# Dissipation contribution
dissipation_cost = self._compute_dissipation_cost(beliefs)
# Non-equilibrium correction terms
correlation_correction = self._compute_correlation_correction(beliefs)
total_free_energy = F_eq + external_work + dissipation_cost + correlation_correction
return {
'total_nonequilibrium_free_energy': total_free_energy,
'equilibrium_component': F_eq,
'driving_contribution': external_work,
'dissipation_cost': dissipation_cost,
'correlation_correction': correlation_correction,
'entropy_production_rate': self.compute_entropy_production_rate(
beliefs, self._compute_probability_current(beliefs))
}
def _compute_probability_gradient(self, state: np.ndarray) -> np.ndarray:
"""Compute gradient of log probability."""
# Finite difference approximation
h = 1e-6
gradient = np.zeros_like(state)
for i in range(len(state)):
state_plus = state.copy()
state_minus = state.copy()
state_plus[i] += h
state_minus[i] -= h
log_prob_plus = np.log(self._probability_density(state_plus) + 1e-15)
log_prob_minus = np.log(self._probability_density(state_minus) + 1e-15)
gradient[i] = (log_prob_plus - log_prob_minus) / (2 * h)
return gradient
def _compute_probability_current(self, beliefs: np.ndarray) -> np.ndarray:
"""Compute probability current in belief space."""
# Simplified current computation
# Full implementation would require solving continuity equation
return np.gradient(beliefs)
def _probability_density(self, state: np.ndarray) -> float:
"""Compute probability density at given state."""
# Simplified Gaussian density
return np.exp(-0.5 * np.sum(state**2) / self.kT)
def compute_fluctuation_dissipation_relation(self,
time_series: np.ndarray,
perturbation_response: np.ndarray,
frequencies: np.ndarray) -> Dict[str, np.ndarray]:
"""Verify fluctuation-dissipation relation.
Tests whether: χ(ω) = (1/kT) ∫ ⟨δX(t)δX(0)⟩ e^(-iωt) dt
Args:
time_series: Time series of system fluctuations
perturbation_response: Response to small perturbations
frequencies: Frequency range for analysis
Returns:
Fluctuation-dissipation analysis
"""
# Compute autocorrelation function
autocorr = self._compute_autocorrelation(time_series)
# Fourier transform to get susceptibility
susceptibility_theory = np.fft.fft(autocorr) / self.kT
# Compare with measured response
susceptibility_measured = np.fft.fft(perturbation_response)
# Compute violation measure
fdr_violation = np.abs(susceptibility_theory - susceptibility_measured)
return {
'theoretical_susceptibility': susceptibility_theory,
'measured_susceptibility': susceptibility_measured,
'fdr_violation': fdr_violation,
'violation_magnitude': np.mean(fdr_violation),
'frequencies': frequencies
}
def _compute_autocorrelation(self, time_series: np.ndarray) -> np.ndarray:
"""Compute autocorrelation function."""
n = len(time_series)
autocorr = np.correlate(time_series, time_series, mode='full')
return autocorr[n-1:] # Take positive lags only
### Quantum Generalizations
**Definition** (Quantum Free Energy): For quantum systems with density matrix $\rho$:
$F_Q = \text{Tr}[\rho H] - T S_Q[\rho]$
where $S_Q[\rho] = -\text{Tr}[\rho \ln \rho]$ is the von Neumann entropy.
```python
class QuantumFreeEnergyPrinciple:
"""Quantum mechanical extensions of the free energy principle."""
def __init__(self,
hilbert_space_dim: int,
hamiltonian: np.ndarray,
temperature: float = 1.0,
hbar: float = 1.0):
"""Initialize quantum free energy system.
Args:
hilbert_space_dim: Dimension of Hilbert space
hamiltonian: System Hamiltonian matrix
temperature: Temperature parameter
hbar: Reduced Planck constant (set to 1 in natural units)
"""
self.dim = hilbert_space_dim
self.H = hamiltonian
self.kT = temperature
self.hbar = hbar
# Validate Hamiltonian
if not self._is_hermitian(hamiltonian):
raise ValueError("Hamiltonian must be Hermitian")
def compute_quantum_free_energy(self,
density_matrix: np.ndarray) -> Dict[str, float]:
"""Compute quantum free energy F = ⟨H⟩ - T S_Q.
Args:
density_matrix: Quantum state density matrix ρ
Returns:
Quantum free energy components
"""
# Validate density matrix
if not self._is_valid_density_matrix(density_matrix):
raise ValueError("Invalid density matrix")
# Compute internal energy
internal_energy = np.real(np.trace(density_matrix @ self.H))
# Compute von Neumann entropy
eigenvals = np.linalg.eigvals(density_matrix)
eigenvals = eigenvals[eigenvals > 1e-15] # Remove zero eigenvalues
von_neumann_entropy = -np.sum(eigenvals * np.log(eigenvals))
# Free energy
free_energy = internal_energy - self.kT * von_neumann_entropy
return {
'quantum_free_energy': free_energy,
'internal_energy': internal_energy,
'von_neumann_entropy': von_neumann_entropy,
'thermal_energy': self.kT * von_neumann_entropy
}
def quantum_variational_principle(self,
trial_density_matrix: np.ndarray,
target_hamiltonian: np.ndarray) -> Dict[str, Any]:
"""Apply variational principle to quantum free energy.
Minimizes F[ρ] = Tr[ρH] - T S[ρ] over density matrices ρ.
Args:
trial_density_matrix: Trial quantum state
target_hamiltonian: Target Hamiltonian
Returns:
Variational optimization results
"""
def objective(rho_vec: np.ndarray) -> float:
"""Objective function for optimization."""
# Reshape vector to matrix
rho = rho_vec.reshape(self.dim, self.dim)
# Ensure Hermiticity and trace normalization
rho = 0.5 * (rho + rho.conj().T)
rho = rho / np.trace(rho)
# Compute free energy
result = self.compute_quantum_free_energy(rho)
return result['quantum_free_energy']
# Initial guess - thermal state
beta = 1.0 / self.kT
thermal_state = scipy.linalg.expm(-beta * target_hamiltonian)
thermal_state = thermal_state / np.trace(thermal_state)
# Optimization
from scipy.optimize import minimize
result = minimize(
objective,
thermal_state.flatten(),
method='L-BFGS-B'
)
optimal_rho = result.x.reshape(self.dim, self.dim)
optimal_rho = 0.5 * (optimal_rho + optimal_rho.conj().T)
optimal_rho = optimal_rho / np.trace(optimal_rho)
return {
'optimal_density_matrix': optimal_rho,
'optimal_free_energy': result.fun,
'convergence_info': result,
'thermal_state_comparison': self.compute_quantum_free_energy(thermal_state)
}
def quantum_master_equation(self,
initial_state: np.ndarray,
lindblad_operators: List[np.ndarray],
time_span: Tuple[float, float],
num_points: int = 100) -> Dict[str, np.ndarray]:
"""Solve quantum master equation for open system dynamics.
dρ/dt = -i/ℏ [H,ρ] + ∑_k (L_k ρ L_k† - ½{L_k†L_k, ρ})
Args:
initial_state: Initial density matrix
lindblad_operators: List of Lindblad jump operators
time_span: Time interval for evolution
num_points: Number of time points
Returns:
Time evolution of quantum state and free energy
"""
def lindblad_equation(t: float, rho_vec: np.ndarray) -> np.ndarray:
"""Lindblad master equation in vectorized form."""
rho = rho_vec.reshape(self.dim, self.dim)
# Hamiltonian evolution
drho_dt = -1j/self.hbar * (self.H @ rho - rho @ self.H)
# Lindblad dissipation terms
for L in lindblad_operators:
drho_dt += (L @ rho @ L.conj().T -
0.5 * (L.conj().T @ L @ rho + rho @ L.conj().T @ L))
return drho_dt.flatten()
# Time evolution
times = np.linspace(time_span[0], time_span[1], num_points)
from scipy.integrate import solve_ivp
solution = solve_ivp(
lindblad_equation,
time_span,
initial_state.flatten(),
t_eval=times,
method='RK45'
)
# Extract density matrices and compute free energies
density_matrices = []
free_energies = []
entropies = []
for i in range(len(times)):
rho = solution.y[:, i].reshape(self.dim, self.dim)
density_matrices.append(rho)
fe_result = self.compute_quantum_free_energy(rho)
free_energies.append(fe_result['quantum_free_energy'])
entropies.append(fe_result['von_neumann_entropy'])
return {
'times': times,
'density_matrices': density_matrices,
'free_energies': np.array(free_energies),
'entropies': np.array(entropies),
'solution': solution
}
def quantum_information_geometry(self,
density_matrix: np.ndarray) -> Dict[str, np.ndarray]:
"""Compute quantum information geometric quantities.
Args:
density_matrix: Quantum state density matrix
Returns:
Information geometric measures
"""
# Quantum Fisher information matrix
quantum_fisher = self._compute_quantum_fisher_information(density_matrix)
# Bures metric
bures_metric = 0.25 * quantum_fisher
# Quantum relative entropy (quantum KL divergence)
thermal_state = self._thermal_state()
quantum_relative_entropy = self._quantum_relative_entropy(
density_matrix, thermal_state)
return {
'quantum_fisher_information': quantum_fisher,
'bures_metric': bures_metric,
'quantum_relative_entropy': quantum_relative_entropy,
'eigenvalues': np.linalg.eigvals(density_matrix),
'purity': np.real(np.trace(density_matrix @ density_matrix))
}
def _is_hermitian(self, matrix: np.ndarray, tol: float = 1e-10) -> bool:
"""Check if matrix is Hermitian."""
return np.allclose(matrix, matrix.conj().T, atol=tol)
def _is_valid_density_matrix(self, rho: np.ndarray, tol: float = 1e-10) -> bool:
"""Validate density matrix properties."""
# Check Hermiticity
if not self._is_hermitian(rho, tol):
return False
# Check trace normalization
if not np.allclose(np.trace(rho), 1.0, atol=tol):
return False
# Check positive semidefiniteness
eigenvals = np.linalg.eigvals(rho)
if np.any(eigenvals < -tol):
return False
return True
def _thermal_state(self) -> np.ndarray:
"""Compute thermal equilibrium state."""
beta = 1.0 / self.kT
thermal = scipy.linalg.expm(-beta * self.H)
return thermal / np.trace(thermal)
def _compute_quantum_fisher_information(self, rho: np.ndarray) -> np.ndarray:
"""Compute quantum Fisher information matrix."""
# Simplified computation for demonstration
# Full implementation requires more sophisticated methods
eigenvals, eigenvecs = np.linalg.eig(rho)
# Remove zero eigenvalues
mask = eigenvals > 1e-15
eigenvals = eigenvals[mask]
eigenvecs = eigenvecs[:, mask]
# Compute Fisher information (simplified)
fisher = np.zeros((self.dim, self.dim))
for i, lam in enumerate(eigenvals):
if lam > 1e-15:
fisher += (1.0 / lam) * np.outer(eigenvecs[:, i], eigenvecs[:, i].conj())
return fisher
def _quantum_relative_entropy(self, rho: np.ndarray, sigma: np.ndarray) -> float:
"""Compute quantum relative entropy S(ρ‖σ)."""
# S(ρ‖σ) = Tr[ρ(ln ρ - ln σ)]
# Eigendecomposition
eigenvals_rho, eigenvecs_rho = np.linalg.eig(rho)
eigenvals_sigma, eigenvecs_sigma = np.linalg.eig(sigma)
# Remove zero eigenvalues
eigenvals_rho = eigenvals_rho[eigenvals_rho > 1e-15]
eigenvals_sigma = eigenvals_sigma[eigenvals_sigma > 1e-15]
# Compute matrix logarithms
ln_rho = eigenvecs_rho @ np.diag(np.log(eigenvals_rho)) @ eigenvecs_rho.conj().T
ln_sigma = eigenvecs_sigma @ np.diag(np.log(eigenvals_sigma)) @ eigenvecs_sigma.conj().T
return np.real(np.trace(rho @ (ln_rho - ln_sigma)))
### Stochastic Thermodynamics Integration
class StochasticThermodynamics:
"""Stochastic thermodynamics framework for free energy principle."""
def __init__(self,
temperature: float,
protocol: Callable[[float], np.ndarray]):
"""Initialize stochastic thermodynamics analysis.
Args:
temperature: System temperature
protocol: Time-dependent protocol λ(t)
"""
self.kT = temperature
self.protocol = protocol
def compute_stochastic_work(self,
trajectory: np.ndarray,
times: np.ndarray) -> Dict[str, float]:
"""Compute work along stochastic trajectory.
W = ∫ (∂H/∂λ)(λ(t)) dλ/dt dt
Args:
trajectory: Stochastic trajectory x(t)
times: Time points
Returns:
Work statistics
"""
work_increments = []
for i in range(len(times) - 1):
dt = times[i+1] - times[i]
# Protocol change
lambda_t = self.protocol(times[i])
lambda_next = self.protocol(times[i+1])
dlambda_dt = (lambda_next - lambda_t) / dt
# Work increment (simplified)
dW = self._force_on_protocol(trajectory[i], lambda_t) * dlambda_dt * dt
work_increments.append(dW)
total_work = np.sum(work_increments)
work_variance = np.var(work_increments) * len(work_increments)
return {
'total_work': total_work,
'work_variance': work_variance,
'work_increments': np.array(work_increments)
}
def jarzynski_equality_verification(self,
work_samples: np.ndarray) -> Dict[str, float]:
"""Verify Jarzynski equality: ⟨e^(-βW)⟩ = e^(-βΔF).
Args:
work_samples: Work values from multiple realizations
Returns:
Jarzynski equality analysis
"""
beta = 1.0 / self.kT
# Compute exponential average
exp_work = np.exp(-beta * work_samples)
jarzynski_estimator = np.mean(exp_work)
# Free energy difference estimate
delta_F_estimate = -self.kT * np.log(jarzynski_estimator)
# Theoretical free energy difference (would be computed separately)
delta_F_theory = 0.0 # Placeholder
# Verification metric
verification_error = abs(delta_F_estimate - delta_F_theory)
return {
'jarzynski_estimator': jarzynski_estimator,
'delta_F_estimate': delta_F_estimate,
'delta_F_theory': delta_F_theory,
'verification_error': verification_error,
'work_statistics': {
'mean_work': np.mean(work_samples),
'work_std': np.std(work_samples),
'min_work': np.min(work_samples),
'max_work': np.max(work_samples)
}
}
def _force_on_protocol(self, state: np.ndarray, lambda_val: float) -> float:
"""Compute force exerted on protocol parameter."""
# Simplified force computation
return np.sum(state * lambda_val)
# Example usage and validation
def validate_advanced_extensions():
"""Validate advanced theoretical extensions."""
# Non-equilibrium system
neq_system = NonEquilibriumFreeEnergy(
temperature=1.0,
dissipation_rate=0.1,
external_driving=lambda t: np.array([np.sin(t)])
)
beliefs = np.array([0.3, 0.4, 0.3])
neq_result = neq_system.compute_nonequilibrium_free_energy(beliefs, 1.0)
print("Non-equilibrium free energy:", neq_result['total_nonequilibrium_free_energy'])
# Quantum system
dim = 3
H = np.array([[1.0, 0.1, 0], [0.1, 2.0, 0.1], [0, 0.1, 3.0]])
quantum_system = QuantumFreeEnergyPrinciple(
hilbert_space_dim=dim,
hamiltonian=H,
temperature=1.0
)
# Random density matrix
rho = np.random.random((dim, dim)) + 1j * np.random.random((dim, dim))
rho = 0.5 * (rho + rho.conj().T)
rho = rho / np.trace(rho)
quantum_result = quantum_system.compute_quantum_free_energy(rho)
print("Quantum free energy:", quantum_result['quantum_free_energy'])
if __name__ == "__main__":
validate_advanced_extensions()
```text
## Related Documentation
- [[active_inference]]
- [[variational_inference]]
- [[bayesian_brain_hypothesis]]
- [[markov_blanket]]
- [[predictive_coding]]
- [[information_theory]]
- [[statistical_physics]]
- [[self_organization]]
- [[autopoiesis]]