# Differential Geometry in Cognitive Modeling --- type: mathematical_concept id: differential_geometry_001 created: 2024-02-06 modified: 2024-02-06 tags: [mathematics, differential-geometry, manifolds, connections] aliases: [riemannian-geometry, geometric-mechanics] semantic_relations: - type: implements links: - [[../../docs/research/research_documentation_index|Research Documentation]] - [[information_geometry]] - type: uses links: - [[tensor_calculus]] - [[lie_theory]] - type: documented_by links: - [[../../docs/guides/implementation_guides_index|Implementation Guides]] - [[../../docs/api/api_documentation_index|API Documentation]] --- ## Overview Differential geometry provides the mathematical foundation for understanding the geometric structure of state spaces and belief manifolds in cognitive modeling. This document explores differential geometric concepts and their applications in active inference. ## Manifold Theory ### Differentiable Manifolds ```python class DifferentiableManifold: """ Differentiable manifold implementation. Theory: - [[manifold_theory]] - [[differential_topology]] - [[smooth_structures]] Mathematics: - [[topology]] - [[calculus_on_manifolds]] """ def __init__(self, dimension: int, atlas: Dict[str, Chart]): self.dim = dimension self.atlas = atlas self._validate_smooth_structure() def coordinate_change(self, chart1: str, chart2: str, point: np.ndarray) -> np.ndarray: """Change coordinates between charts.""" if not self._charts_overlap(chart1, chart2): raise ValueError("Charts do not overlap") return self._compute_transition(chart1, chart2, point) def tangent_space(self, point: np.ndarray, chart: str) -> TangentSpace: """Get tangent space at point.""" return self._construct_tangent_space(point, chart) ``` ### Riemannian Metrics ```python class RiemannianMetric: """ Riemannian metric implementation. Theory: - [[riemannian_geometry]] - [[metric_tensor]] - [[inner_product]] Mathematics: - [[differential_geometry]] - [[tensor_calculus]] """ def __init__(self, manifold: DifferentiableManifold): self.manifold = manifold def metric_tensor(self, point: np.ndarray, chart: str) -> np.ndarray: """Compute metric tensor at point.""" # Get coordinate basis basis = self._coordinate_basis(point, chart) # Compute components g = self._compute_metric_components(basis) return g def distance(self, p: np.ndarray, q: np.ndarray, chart: str) -> float: """Compute Riemannian distance.""" # Find geodesic gamma = self._solve_geodesic_equation(p, q) # Compute length return self._compute_curve_length(gamma) ``` ## Connections and Transport ### Levi-Civita Connection ```python class LeviCivitaConnection: """ Levi-Civita connection implementation. Theory: - [[riemannian_connection]] - [[parallel_transport]] - [[geodesics]] Mathematics: - [[differential_geometry]] - [[tensor_calculus]] """ def __init__(self, metric: RiemannianMetric): self.metric = metric def christoffel_symbols(self, point: np.ndarray, chart: str) -> np.ndarray: """Compute Christoffel symbols.""" # Metric and derivatives g = self.metric.metric_tensor(point, chart) dg = self._metric_derivatives(point, chart) # Compute symbols gamma = self._compute_christoffel(g, dg) return gamma def parallel_transport(self, vector: np.ndarray, curve: Curve) -> np.ndarray: """Parallel transport vector along curve.""" return self._solve_parallel_transport(vector, curve) ``` ### Geodesic Flow ```python class GeodesicFlow: """ Geodesic flow implementation. Theory: - [[geodesic_equation]] - [[exponential_map]] - [[hamiltonian_flow]] Mathematics: - [[differential_geometry]] - [[symplectic_geometry]] """ def __init__(self, connection: LeviCivitaConnection): self.connection = connection def geodesic(self, initial_point: np.ndarray, initial_velocity: np.ndarray, time: float) -> np.ndarray: """Compute geodesic flow.""" # Geodesic equation def geodesic_equation(t, state): x, v = state[:self.dim], state[self.dim:] gamma = self.connection.christoffel_symbols(x) return np.concatenate([v, -gamma.dot(v).dot(v)]) # Solve ODE solution = solve_ivp( geodesic_equation, (0, time), np.concatenate([initial_point, initial_velocity]) ) return solution.y[:self.dim, -1] ``` ## Curvature Theory ### Riemann Curvature ```python class RiemannCurvature: """ Riemann curvature implementation. Theory: - [[curvature_tensor]] - [[sectional_curvature]] - [[ricci_curvature]] Mathematics: - [[differential_geometry]] - [[tensor_calculus]] """ def __init__(self, connection: LeviCivitaConnection): self.connection = connection def curvature_tensor(self, point: np.ndarray, chart: str) -> np.ndarray: """Compute Riemann curvature tensor.""" # Connection coefficients gamma = self.connection.christoffel_symbols(point, chart) # Compute components R = self._compute_riemann_components(gamma) return R def sectional_curvature(self, point: np.ndarray, plane: np.ndarray, chart: str) -> float: """Compute sectional curvature.""" # Curvature tensor R = self.curvature_tensor(point, chart) # Project onto plane K = self._compute_sectional(R, plane) return K ``` ## Lie Theory ### Lie Groups ```python class LieGroup: """ Lie group implementation. Theory: - [[lie_groups]] - [[lie_algebras]] - [[exponential_map]] Mathematics: - [[differential_geometry]] - [[group_theory]] """ def __init__(self, dimension: int, multiplication: Callable): self.dim = dimension self.multiply = multiplication def lie_algebra_basis(self) -> List[np.ndarray]: """Get Lie algebra basis.""" return self._compute_basis() def exponential(self, X: np.ndarray) -> np.ndarray: """Compute Lie group exponential.""" return self._compute_exponential(X) def adjoint(self, g: np.ndarray, X: np.ndarray) -> np.ndarray: """Compute adjoint action.""" return self._compute_adjoint(g, X) ``` ### Principal Bundles ```python class PrincipalBundle: """ Principal bundle implementation. Theory: - [[fiber_bundles]] - [[principal_connections]] - [[gauge_theory]] Mathematics: - [[differential_geometry]] - [[lie_theory]] """ def __init__(self, base: DifferentiableManifold, structure_group: LieGroup): self.base = base self.group = structure_group def local_trivialization(self, point: np.ndarray, chart: str) -> Tuple[np.ndarray, np.ndarray]: """Get local trivialization.""" return self._compute_trivialization(point, chart) def connection_form(self, point: np.ndarray, chart: str) -> np.ndarray: """Get connection 1-form.""" return self._compute_connection_form(point, chart) ``` ## Applications to Active Inference ### Belief Manifolds ```python class BeliefManifold: """ Belief manifold implementation. Theory: - [[statistical_manifolds]] - [[information_geometry]] - [[belief_space]] Mathematics: - [[differential_geometry]] - [[probability_theory]] """ def __init__(self, dimension: int, probability_model: ProbabilityModel): self.dim = dimension self.model = probability_model def fisher_metric(self, belief: np.ndarray) -> np.ndarray: """Compute Fisher information metric.""" return self._compute_fisher_metric(belief) def natural_gradient(self, belief: np.ndarray, gradient: np.ndarray) -> np.ndarray: """Compute natural gradient.""" G = self.fisher_metric(belief) return np.linalg.solve(G, gradient) ``` ### Free Energy Geometry ```python class FreeEnergyGeometry: """ Free energy geometric structure. Theory: - [[free_energy_principle]] - [[information_geometry]] - [[optimal_control]] Mathematics: - [[differential_geometry]] - [[symplectic_geometry]] """ def __init__(self, belief_manifold: BeliefManifold, free_energy: Callable): self.manifold = belief_manifold self.F = free_energy def free_energy_metric(self, belief: np.ndarray) -> np.ndarray: """Compute metric induced by free energy.""" # Fisher metric G_fisher = self.manifold.fisher_metric(belief) # Free energy Hessian H = self._free_energy_hessian(belief) return G_fisher + H def hamiltonian_flow(self, initial_belief: np.ndarray, time: float) -> np.ndarray: """Compute Hamiltonian flow of free energy.""" return self._solve_hamilton_equations(initial_belief, time) ``` ## Implementation Considerations ### Numerical Methods ```python # @numerical_methods numerical_implementations = { "geodesics": { "runge_kutta": "4th order RK method", "symplectic": "Symplectic integrators", "variational": "Variational integrators" }, "curvature": { "finite_differences": "Numerical derivatives", "automatic_differentiation": "AD for tensors", "symbolic": "Symbolic computation" }, "parallel_transport": { "schild": "Schild's ladder method", "pole": "Pole ladder method", "numerical": "Direct integration" } } ``` ### Computational Efficiency ```python # @efficiency_considerations efficiency_methods = { "metric_computation": { "caching": "Cache metric tensors", "approximation": "Low-rank approximations", "sparsity": "Exploit sparsity patterns" }, "geodesic_computation": { "adaptive": "Adaptive step size", "local": "Local coordinate systems", "parallel": "Parallel transport methods" }, "curvature_computation": { "lazy": "Lazy tensor evaluation", "symmetry": "Exploit symmetries", "distributed": "Parallel computation" } } ``` ## Documentation Links - [[../../docs/research/research_documentation_index|Research Documentation]] - [[../../docs/guides/implementation_guides_index|Implementation Guides]] - [[../../docs/api/api_documentation_index|API Documentation]] - [[../../docs/examples/usage_examples_index|Usage Examples]] ## References - [[do_carmo]] - Riemannian Geometry - [[lee]] - Introduction to Smooth Manifolds - [[kobayashi_nomizu]] - Foundations of Differential Geometry - [[marsden_ratiu]] - Introduction to Mechanics and Symmetry --- title: Differential Geometry type: concept status: stable created: 2024-02-12 tags: - mathematics - geometry - topology semantic_relations: - type: foundation links: - [[manifold_theory]] - [[topology]] - type: relates links: - [[information_geometry]] - [[lie_groups]] - [[tensor_analysis]] --- # Differential Geometry ## Core Concepts ### Manifolds 1. **Smooth Manifolds** ```math M = \{(U_α,φ_α) | α ∈ A\} ``` where: - U_α are open sets - φ_α are coordinate charts - A is atlas index set 2. **Tangent Space** ```math T_pM = span\{\frac{∂}{∂x^i}|_p\} ``` where: - p is point on manifold - x^i are local coordinates ### Differential Forms 1. **Exterior Derivative** ```math dω = \sum_{i_1<...<i_k} \frac{∂ω_{i_1...i_k}}{∂x^j}dx^j ∧ dx^{i_1} ∧ ... ∧ dx^{i_k} ``` where: - ω is k-form - ∧ is wedge product 2. **Integration** ```math \int_M ω = \sum_α \int_{φ_α(U_α)} (φ_α^{-1})^*ω ``` where: - ω is n-form - φ_α are charts ### Riemannian Geometry 1. **Metric Tensor** ```math ds² = g_{ij}dx^idx^j ``` where: - g_{ij} is metric components - dx^i are coordinate differentials 2. **Christoffel Symbols** ```math Γ^k_{ij} = \frac{1}{2}g^{kl}(∂_ig_{jl} + ∂_jg_{il} - ∂_lg_{ij}) ``` where: - g^{kl} is inverse metric - ∂_i is partial derivative ## Advanced Concepts ### Connection Theory 1. **Covariant Derivative** ```math ∇_X Y = (X^i∂_iY^k + Γ^k_{ij}X^iY^j)\frac{∂}{∂x^k} ``` where: - X,Y are vector fields - Γ^k_{ij} are connection coefficients 2. **Parallel Transport** ```math \frac{D}{dt}V^i + Γ^i_{jk}\frac{dx^j}{dt}V^k = 0 ``` where: - V^i are vector components - D/dt is covariant derivative ### Curvature 1. **Riemann Tensor** ```math R^i_{jkl} = ∂_kΓ^i_{jl} - ∂_lΓ^i_{jk} + Γ^i_{mk}Γ^m_{jl} - Γ^i_{ml}Γ^m_{jk} ``` where: - Γ^i_{jk} are Christoffel symbols 2. **Ricci Tensor** ```math R_{ij} = R^k_{ikj} ``` where: - R^k_{ikj} is Riemann tensor ### Lie Groups 1. **Lie Algebra** ```math [X,Y] = XY - YX ``` where: - X,Y are vector fields - [,] is Lie bracket 2. **Exponential Map** ```math exp: g → G, exp(X) = \sum_{n=0}^∞ \frac{X^n}{n!} ``` where: - g is Lie algebra - G is Lie group ## Applications ### Information Geometry 1. **Fisher Metric** ```math g_{ij}(θ) = E[-\frac{∂²}{∂θ^i∂θ^j}log p(x|θ)] ``` where: - θ are statistical parameters - p(x|θ) is probability model 2. **α-Connections** ```math Γ^{(α)}_{ijk} = E[\frac{∂}{\∂θ^i}log p(x|θ)\frac{∂}{\∂θ^j}log p(x|θ)\frac{∂}{\∂θ^k}log p(x|θ)] ``` where: - α is connection parameter ### General Relativity 1. **Einstein Field Equations** ```math R_{μν} - \frac{1}{2}Rg_{μν} + Λg_{μν} = \frac{8πG}{c^4}T_{μν} ``` where: - R_{μν} is Ricci tensor - T_{μν} is stress-energy tensor 2. **Geodesic Equation** ```math \frac{d²x^μ}{dτ²} + Γ^μ_{αβ}\frac{dx^α}{dτ}\frac{dx^β}{dτ} = 0 ``` where: - τ is proper time - Γ^μ_{αβ} are Christoffel symbols ### Machine Learning 1. **Natural Gradient** ```math θ_{t+1} = θ_t - ηg^{ij}(θ_t)∂_jL(θ_t) ``` where: - g^{ij} is inverse Fisher metric - L is loss function 2. **Manifold Learning** ```math min_f \int_M ||∇f||²_g dV_g ``` where: - f is embedding - g is metric - dV_g is volume form ## Implementation ### Differential Geometry Tools ```python class DifferentialGeometry: def __init__(self, manifold: Manifold, metric: Metric): """Initialize differential geometry tools. Args: manifold: Manifold structure metric: Riemannian metric """ self.manifold = manifold self.metric = metric def christoffel_symbols(self, point: np.ndarray) -> np.ndarray: """Compute Christoffel symbols. Args: point: Point on manifold Returns: gamma: Christoffel symbols """ # Get metric and derivatives g = self.metric.evaluate(point) dg = self.metric.derivative(point) # Compute inverse metric g_inv = np.linalg.inv(g) # Compute Christoffel symbols gamma = np.zeros((g.shape[0], g.shape[0], g.shape[0])) for i in range(g.shape[0]): for j in range(g.shape[0]): for k in range(g.shape[0]): gamma[i,j,k] = 0.5 * np.sum( g_inv[i,:] * ( dg[j,:,k] + dg[k,:,j] - dg[:,j,k] ) ) return gamma ``` ### Geodesic Integration ```python class GeodesicIntegrator: def __init__(self, geometry: DifferentialGeometry, step_size: float = 0.01): """Initialize geodesic integrator. Args: geometry: Differential geometry tools step_size: Integration step size """ self.geometry = geometry self.step_size = step_size def integrate(self, initial_point: np.ndarray, initial_velocity: np.ndarray, n_steps: int) -> Tuple[np.ndarray, np.ndarray]: """Integrate geodesic equation. Args: initial_point: Starting point initial_velocity: Initial velocity n_steps: Number of integration steps Returns: points: Geodesic points velocities: Geodesic velocities """ points = [initial_point] velocities = [initial_velocity] for _ in range(n_steps): # Get current state point = points[-1] velocity = velocities[-1] # Compute Christoffel symbols gamma = self.geometry.christoffel_symbols(point) # Update velocity acceleration = -np.sum( gamma * velocity[None,:] * velocity[:,None], axis=(0,1) ) new_velocity = velocity + self.step_size * acceleration # Update position new_point = point + self.step_size * velocity # Store results points.append(new_point) velocities.append(new_velocity) return np.array(points), np.array(velocities) ``` ## Advanced Topics ### Symplectic Geometry 1. **Symplectic Form** ```math ω = dx^i ∧ dp_i ``` where: - x^i are position coordinates - p_i are momentum coordinates 2. **Hamiltonian Flow** ```math \dot{x}^i = \frac{∂H}{∂p_i}, \dot{p}_i = -\frac{∂H}{∂x^i} ``` where: - H is Hamiltonian - x^i,p_i are canonical coordinates ### Complex Geometry 1. **Kähler Manifolds** ```math ω = ig_{αβ̄}dz^α ∧ dz̄^β ``` where: - g_{αβ̄} is Hermitian metric - z^α are complex coordinates 2. **Holomorphic Forms** ```math ∂ω = 0 ``` where: - ∂ is Dolbeault operator - ω is differential form ## Future Directions ### Emerging Areas 1. **Geometric Deep Learning** - Group equivariant networks - Manifold optimization - Topological data analysis 2. **Quantum Geometry** - Non-commutative geometry - Quantum gravity - String theory ### Open Problems 1. **Theoretical Challenges** - Geometric flows - Singular geometries - Mirror symmetry 2. **Practical Challenges** - Numerical methods - High-dimensional manifolds - Discrete geometry ## Related Topics 1. [[topology|Topology]] 2. [[lie_theory|Lie Theory]] 3. [[algebraic_geometry|Algebraic Geometry]] 4. [[geometric_analysis|Geometric Analysis]]