# Category Theory ## Core Concepts ### Categories 1. **Definition** ```math \mathcal{C} = (Ob(\mathcal{C}), Hom(\mathcal{C}), \circ) ``` where: - Ob is objects - Hom is morphisms - ∘ is composition 2. **Functors** ```math F: \mathcal{C} \to \mathcal{D} ``` Properties: - F(f ∘ g) = F(f) ∘ F(g) - F(id_A) = id_{F(A)} ### Natural Transformations 1. **Definition** ```math η: F \Rightarrow G ``` where: - F,G are functors - η is family of morphisms 2. **Naturality Square** ```math η_B \circ F(f) = G(f) \circ η_A ``` where: - f: A → B - η_A, η_B are components ## Advanced Concepts ### Adjoint Functors 1. **Definition** ```math F \dashv G \iff Hom_\mathcal{D}(F(A),B) \cong Hom_\mathcal{C}(A,G(B)) ``` where: - F: C → D is left adjoint - G: D → C is right adjoint 2. **Unit and Counit** ```math η: 1_\mathcal{C} \Rightarrow GF, \quad ε: FG \Rightarrow 1_\mathcal{D} ``` where: - η is unit - ε is counit ### Limits and Colimits 1. **Universal Property** ```math \lim F = \{(x_i)_{i \in I} : F(f)(x_i) = x_j \text{ for all } f: i \to j\} ``` where: - F is functor - I is index category 2. **Kan Extensions** ```math (Lan_K F)(d) = \colim_{(k,α:K(k)\to d)} F(k) ``` where: - K is functor - F is functor to extend ## Applications ### Algebraic Structures 1. **Monads** ```math T: \mathcal{C} \to \mathcal{C}, \quad μ: T^2 \Rightarrow T, \quad η: 1 \Rightarrow T ``` where: - T is endofunctor - μ is multiplication - η is unit 2. **Operads** ```math P(n) \times P(k_1) \times ... \times P(k_n) \to P(k_1 + ... + k_n) ``` where: - P(n) is n-ary operations - × is product ### Homological Algebra 1. **Derived Functors** ```math LF: D^-(\mathcal{A}) \to D^-(\mathcal{B}) ``` where: - D^- is derived category - A,B are abelian categories 2. **Spectral Sequences** ```math E^{p,q}_r \Rightarrow H^{p+q} ``` where: - E^{p,q}_r are pages - H^{p+q} is limit ## Implementation ### Category Theory in Code ```python class Category: def __init__(self, objects: Set[Object], morphisms: Dict[Tuple[Object, Object], Set[Morphism]]): """Initialize category. Args: objects: Objects of category morphisms: Morphisms between objects """ self.objects = objects self.morphisms = morphisms self._validate_category() def compose(self, f: Morphism, g: Morphism) -> Morphism: """Compose morphisms. Args: f: First morphism g: Second morphism Returns: composition: Composed morphism """ if not self._composable(f, g): raise ValueError("Morphisms not composable") return self._compose_morphisms(f, g) def identity(self, obj: Object) -> Morphism: """Get identity morphism. Args: obj: Object Returns: id: Identity morphism """ return self._get_identity(obj) ``` ### Functorial Computations ```python class Functor: def __init__(self, source: Category, target: Category, object_map: Callable, morphism_map: Callable): """Initialize functor. Args: source: Source category target: Target category object_map: Object mapping morphism_map: Morphism mapping """ self.source = source self.target = target self.object_map = object_map self.morphism_map = morphism_map def apply(self, x: Union[Object, Morphism]) -> Union[Object, Morphism]: """Apply functor. Args: x: Object or morphism Returns: Fx: Mapped object or morphism """ if isinstance(x, Object): return self.object_map(x) return self.morphism_map(x) def compose(self, G: 'Functor') -> 'Functor': """Compose with another functor. Args: G: Second functor Returns: composition: Composed functor """ return self._compose_functors(self, G) ``` ## Advanced Topics ### Higher Categories 1. **n-Categories** ```math k\text{-morphisms for } 0 \leq k \leq n ``` where: - k=0 are objects - k>0 are higher morphisms 2. **∞-Categories** ```math \text{Hom}(x,y) \text{ is topological space} ``` where: - x,y are objects - Hom is mapping space ### Topos Theory 1. **Elementary Topos** ```math \Omega: 1 \to \Omega \text{ classifies subobjects} ``` where: - Ω is subobject classifier - 1 is terminal object 2. **Geometric Morphisms** ```math f^* \dashv f_* : \mathcal{F} \to \mathcal{E} ``` where: - f* is inverse image - f_* is direct image ## Future Directions ### Emerging Areas 1. **Higher Category Theory** - (∞,1)-categories - Model Categories - Derived Geometry 2. **Homotopy Type Theory** - Univalent Foundations - Higher Inductive Types - Synthetic Homotopy Theory ### Open Problems 1. **Theoretical Challenges** - Higher Topos Theory - Derived Categories - Motivic Theory 2. **Practical Challenges** - Computational Methods - Type Theory Integration - Software Implementation ## Related Topics 1. [[algebraic_geometry|Algebraic Geometry]] 2. [[homological_algebra|Homological Algebra]] 3. [[type_theory|Type Theory]] 4. [[logic|Logic]]