# Algebraic Geometry ## Core Concepts ### Affine Varieties 1. **Polynomial Rings** ```math k[x_1,...,x_n]/I ``` where: - k is field - I is ideal - x_i are variables 2. **Zero Sets** ```math V(I) = \{x \in k^n : f(x) = 0 \text{ for all } f \in I\} ``` where: - I is ideal - k is field - V is variety ### Schemes 1. **Spectrum** ```math \text{Spec}(R) = \{P \subset R : P \text{ is prime ideal}\} ``` where: - R is ring - P is prime ideal 2. **Structure Sheaf** ```math \mathcal{O}_X(U) = \{s: U \to \coprod_{p \in U} \mathcal{O}_{X,p}\} ``` where: - X is scheme - U is open set - O_{X,p} is local ring ## Advanced Concepts ### Cohomology Theory 1. **Sheaf Cohomology** ```math H^i(X,\mathcal{F}) = R^i\Gamma(X,\mathcal{F}) ``` where: - F is sheaf - Γ is global sections - R^i is derived functor 2. **Čech Cohomology** ```math \check{H}^i(X,\mathcal{F}) = \varinjlim_{\mathfrak{U}} \check{H}^i(\mathfrak{U},\mathcal{F}) ``` where: - U is open cover - F is sheaf ### Intersection Theory 1. **Intersection Product** ```math Z_1 \cdot Z_2 = \sum_i m_i[V_i] ``` where: - Z_i are cycles - m_i are multiplicities - V_i are components 2. **Chow Ring** ```math A^*(X) = \bigoplus_k A^k(X) ``` where: - A^k is k-codimensional cycles - X is variety ## Applications ### Moduli Spaces 1. **Moduli of Curves** ```math \mathcal{M}_g = \{[C] : C \text{ is smooth curve of genus } g\} ``` where: - g is genus - [C] is isomorphism class 2. **Stable Maps** ```math \overline{\mathcal{M}}_{g,n}(X,\beta) ``` where: - g is genus - n is marked points - β is homology class ### Mirror Symmetry 1. **Hodge Numbers** ```math h^{p,q}(X) = h^{n-p,q}(X^\vee) ``` where: - X is Calabi-Yau - X^\vee is mirror - h^{p,q} are Hodge numbers 2. **Gromov-Witten Invariants** ```math \langle τ_{a_1}(γ_1),...,τ_{a_n}(γ_n)\rangle_{g,β} ``` where: - τ_a are descendants - γ_i are cohomology classes - β is curve class ## Implementation ### Computational Algebraic Geometry ```python class AlgebraicVariety: def __init__(self, polynomials: List[str], variables: List[str]): """Initialize algebraic variety. Args: polynomials: Defining polynomials variables: Variable names """ self.polynomials = polynomials self.variables = variables self.ring = self._construct_ring() def compute_groebner_basis(self, ordering: str = 'lex') -> List[str]: """Compute Gröbner basis. Args: ordering: Monomial ordering Returns: basis: Gröbner basis """ # Convert to ideal ideal = self._polynomials_to_ideal() # Compute basis basis = self._buchberger_algorithm(ideal, ordering) return basis def dimension(self) -> int: """Compute variety dimension. Returns: dim: Krull dimension """ # Get Gröbner basis basis = self.compute_groebner_basis() # Compute dimension return self._krull_dimension(basis) ``` ### Intersection Theory ```python class IntersectionTheory: def __init__(self, variety: AlgebraicVariety): """Initialize intersection theory. Args: variety: Algebraic variety """ self.variety = variety def intersection_product(self, cycle1: Cycle, cycle2: Cycle) -> Cycle: """Compute intersection product. Args: cycle1: First cycle cycle2: Second cycle Returns: product: Intersection product """ # Compute proper intersection components = self._proper_intersection(cycle1, cycle2) # Get multiplicities multiplicities = self._intersection_multiplicities( cycle1, cycle2, components ) return Cycle(components, multiplicities) def chern_class(self, bundle: VectorBundle) -> ChernClass: """Compute Chern class. Args: bundle: Vector bundle Returns: chern: Chern class """ return self._compute_chern_class(bundle) ``` ## Advanced Topics ### Derived Categories 1. **Derived Functor** ```math RF: D^b(A) \to D^b(B) ``` where: - D^b is bounded derived category - A,B are abelian categories 2. **Fourier-Mukai Transform** ```math \Phi_\mathcal{P}: D^b(X) \to D^b(Y) ``` where: - P is kernel - X,Y are varieties ### Stacks 1. **Moduli Stack** ```math \mathcal{M} = [X/G] ``` where: - X is scheme - G is group - [/] is quotient stack 2. **Derived Stack** ```math R\mathcal{M} = [RX/G] ``` where: - RX is derived scheme - G is group ## Future Directions ### Emerging Areas 1. **Derived Algebraic Geometry** - Derived Schemes - Higher Stacks - Spectral Algebraic Geometry 2. **Motivic Theory** - Motivic Integration - Motivic Cohomology - Virtual Classes ### Open Problems 1. **Theoretical Challenges** - Hodge Conjecture - Minimal Model Program - Derived Categories 2. **Practical Challenges** - Algorithm Efficiency - Symbolic Computation - Numerical Methods ## Related Topics 1. [[commutative_algebra|Commutative Algebra]] 2. [[category_theory|Category Theory]] 3. [[complex_geometry|Complex Geometry]] 4. [[number_theory|Number Theory]]