# Machine Learning Guide ## Overview This guide covers machine learning concepts, implementations, and best practices in the cognitive modeling framework. ## Core Concepts ### Learning Paradigms 1. Active Inference - Free energy minimization - Belief updating - Action selection - See [[knowledge_base/cognitive/active_inference]] 1. Predictive Processing - Prediction error minimization - Hierarchical inference - Precision weighting - See [[knowledge_base/cognitive/predictive_processing]] 1. Variational Methods - Variational inference - Variational Bayes - Mean field approximation - See [[knowledge_base/mathematics/variational_inference]] ## Implementation ### Model Architecture #### Base Components ```python class CognitiveModel: def __init__(self): self.belief_network = BeliefNetwork() self.action_policy = ActionPolicy() self.perception_model = PerceptionModel() ``` #### Learning Components ```python class LearningModule: def __init__(self): self.optimizer = FreeEnergyOptimizer() self.inference = VariationalInference() self.memory = EpisodicMemory() ``` ### Training Process 1. Data Preparation ```python def prepare_data(self, observations): """Prepare data for learning.""" return self.preprocessor.transform(observations) ``` 1. Model Training ```python def train_model(self, data, epochs=100): """Train the cognitive model.""" for epoch in range(epochs): self.update_beliefs(data) self.optimize_policy() self.evaluate_performance() ``` 1. Evaluation ```python def evaluate_model(self, test_data): """Evaluate model performance.""" predictions = self.model.predict(test_data) metrics = self.compute_metrics(predictions) return metrics ``` ## Best Practices ### Model Design 1. Use hierarchical architectures 1. Implement belief updating 1. Enable active inference 1. Support online learning ### Training Process 1. Validate assumptions 1. Monitor convergence 1. Track metrics 1. Save checkpoints ### Evaluation Methods 1. Use multiple metrics 1. Test edge cases 1. Validate stability 1. Compare baselines ## Advanced Topics ### Transfer Learning - Pre-trained models - Domain adaptation - Knowledge transfer - See [[knowledge_base/cognitive/transfer_learning]] ### Meta-Learning - Learning to learn - Adaptation strategies - Parameter optimization - See [[knowledge_base/cognitive/meta_learning]] ### Continual Learning - Catastrophic forgetting - Memory consolidation - Stability-plasticity - See [[knowledge_base/cognitive/continual_learning]] ## Integration ### With Active Inference ```python class ActiveInferenceLearner: """Integrate learning with active inference.""" def __init__(self): self.model = ActiveInferenceModel() self.learner = LearningModule() ``` ### With Predictive Processing ```python class PredictiveLearner: """Integrate learning with predictive processing.""" def __init__(self): self.model = PredictiveModel() self.learner = LearningModule() ``` ## Validation ### Model Validation 1. Test prediction accuracy 1. Validate belief updates 1. Check action selection 1. Verify learning stability ### Performance Metrics 1. Prediction error 1. Free energy 1. Action efficiency 1. Learning rate ## Examples ### Basic Learning ```python # Initialize model model = CognitiveModel() # Train model data = load_training_data() model.train(data) # Evaluate results = model.evaluate(test_data) ``` ### Advanced Learning ```python # Initialize with transfer learning model = CognitiveModel(pretrained=True) # Configure meta-learning model.enable_meta_learning() # Train with continual learning model.train_continual(data_stream) ``` ## Troubleshooting ### Common Issues 1. Convergence problems 1. Memory limitations 1. Performance bottlenecks 1. Integration errors ### Solutions 1. Adjust learning rates 1. Optimize memory usage 1. Profile performance 1. Debug integration ## Related Documentation - [[knowledge_base/cognitive/active_inference]] - [[knowledge_base/cognitive/predictive_processing]] - [[knowledge_base/mathematics/variational_inference]] - [[docs/guides/ai_validation_framework]]