#### *Related to [[Derivative]] and [[Integration]]*
---
## Definition
- The anti[[Derivative|derivative]] of a function f(x) is a function F(x) that's **derivative** is equal to f(x).
- A function can have **multiple antiderivatives** so long as they all derive to the same **original equation**.
>[!example]
>$\text{\color{Bisque}\large Antiderivative example}$
>$\large \Big(3x^2\Big)\longrightarrow\Big(x^3\Big) \text{ or } \Big(x^3 + C\Big)$
- Antiderivatives are an incredibly important part of [[Integration]] since the process of integration requires you to find the **antiderivative of the integrand function.** **In fact most people will indicate that they are finding a function's antiderivative by writing it in the form of an *indefinite integral: $\int$***.
---
## Formatting/notation
- It is typical for the antiderivative of **a function to be denoted using the same letter as its base function, but capital.** For example the antiderivative of $f(x)$ is usually written as $F(x)$
- The **integral symbol: $\int$ is used to denote that you are finding the antiderivative of the function proceeding the it.**
>[!warning]
>- Since the derivative of a constant is zero, its impossible to know if an equation's antiderivative had a constant term *(and what that term is)*. To represent this ambiguity we add the variable $C$ to the end of all antiderivative equations.
>
$\large\text{Dont forget to include}\color{LightCyan}+C\text{ !}$
---
## Antiderivative "rules"
>[!quote]
>#### *Standard rules*
>| ***Name*** | ***Rule*** | ***Example*** |
>|-|-|-|
>| **Power rule** | $\int x^n\rightarrow\color{LightCyan}\left(\frac{x^{n+1}}{n+1}+C\right)$ | $\int x^2\rightarrow\color{LightCyan}\left(\frac{x^3}{3}+C\right)$
>| **Constant multiple rule** | $\int kf(x)\rightarrow\color{LightCyan}\left( k\int f(x)\right)$ | $\int 4x^3\rightarrow\color{LightCyan}\left( 4\cdot\int x^3\right)$
>| **Sum rule** | $\int f(x)+ g(x)\rightarrow\color{LightCyan}\int f(x)+\int g(x)$ | $\int x^2+ 2x\rightarrow\color{LightCyan}\int x^2+\int 2x$
>| **Difference rule** | $\int f(x)-g(x)\rightarrow\color{LightCyan}\int f(x)-\int g(x)$ | $\int 3x-2x^2\rightarrow\color{LightCyan}\int 3x-\int 2x^2$
>| **Constant rule** | $\int k\rightarrow\color{LightCyan}\Big( kx+C\Big)$ | $\int 4\rightarrow\color{LightCyan}\Big( 4x+C\Big)$
>| **Natural log rule** | $\int\frac{1}{x}\rightarrow\color{LightCyan}\Big( \ln\vert x\vert +C\Big)$ | $\int\frac{1}{2x}\rightarrow\color{LightCyan}\left(\frac{\ln\vert 2x\vert}{2}+C\right)$
>| **Euler's rule** | $\int e^x\rightarrow\color{LightCyan}\Big( e^x+C\Big)$ | $\int e^{2x}\rightarrow\color{LightCyan}\left(\frac{e^{2x}}{2}+C\right)$
>| **Natural log rule** | $\begin{aligned}\int\ln(x)\rightarrow\color{LightCyan}\Big(x\ln(x)-x\Big)\\\tiny\color{grey}\text{done using integration by parts}\end{aligned}$ | $\text{\color{grey}no example}$
>*Note: The power rule **will not work** if $n$ is equal to -1*
>[!quote]
>#### *Standard trigonometric rules*
>
>| ***Name*** | ***Rule*** |
>|-|-|
>| **Cosine rule** | $\int \cos x\rightarrow\color{LightCyan}\Big(\sin x+C\Big)$
>| **Sine rule** | $\int \sin x\rightarrow\color{LightCyan}\Big(-\cos x+C\Big)$
>| **Tan rule** | $\int \tan(x)\rightarrow\color{LightCyan}\ln{\large\vert}\sec (x)\,{\large\vert}$
>| **Secant rule** | $\int\sec(x)\rightarrow\color{LightCyan}\ln{\large\vert}\sec(x)+\tan(x)\,{\large\vert}$
>| **Secant squared rule** | $\int \sec^2(x)\rightarrow\color{LightCyan}\Big( \tan(x)+C\Big)$
>| **Cosec rule** | $\int\csc(x)\longrightarrow\color{lightcyan}-\ln{\large\vert}\csc(x)+\cot(x){\large\vert}+C$
>| **Cosec squared rule** | $\int \csc^2(x)\rightarrow\color{LightCyan}\Big( -\cot(x)+C\Big)$
>| **Cotangent rule** | $\int\cot(x)\longrightarrow\color{lightcyan}\ln{\large\vert}\sin(x){\large\vert}+C$
>| **Cotangent squared rule** | $\int\cot^2(x)\longrightarrow\color{lightcyan}-\frac{1}{\tan(x)}-x+C\;\;{\color{grey}\small=}\;\;-\cot(x)-x+C$
>| **Tan squared rule** | $\int\tan^2(x)\rightarrow\color{LightCyan}\tan(x)-x+C$
>[!bug]
>###### *Useful algebra tip:*
>- To get rid of an absolute value you can replace it with a plus or minus sign
---
## Calculator
>[!cite]
>
>---
><iframe src="https://www.wolframalpha.com/calculators/integral-calculator/" width="850" height="1200"></iframe>
>