# Reynolds-averaged Navier-Stokes (RANS) equations
#turbulence #derivation #in-progress
We start with the incompressible Navier-Stokes (NS) equations:![[Navier-Stokes equations#^ec02dc]]
Incompressibility:
![[Incompressibility#^768316]]
Then, we perform a [[Reynolds decomposition]] of the velocity $u$ and pressure $p$, and assume that the flow is [[Stationary random functions|stationary]].
$u_i = \overline{u}_i + u_i', \quad p = \overline{p} + p', \quad \frac{\partial \overline{u}_i}{\partial t} = 0$
Substituting these expressions in our original NS equations and averaging, we obtain
$
\begin{align}
&\overline{\frac{\partial}{\partial t}\left(\overline{u_i} + u_i'\right)} + \overline{\left(\overline{u_j} + u_j'\right)\frac{\partial}{\partial x_j}\left(\overline{u_i} + u_i'\right)} = -\overline{\frac{1}{\rho}\frac{\partial}{\partial x_i}\left(\overline{p} + p'\right)} + \overline{\nu\frac{\partial^2}{\partial x_j \partial x_j}\left(\overline{u_i} + u_i'\right)}\\
\implies&\cancel{\frac{\partial\overline{u_i}}{\partial t}} + \frac{\partial\cancel{\overline{u_i'}}}{\partial t} + \overline{u_j}\frac{\partial\overline{u_i}}{\partial x_j} + \overline{u_j}\frac{\partial\cancel{\overline{u_i'}}}{\partial x_j} + \cancel{\overline{u_j'}}\frac{\partial\overline{u_i}}{\partial x_j} + \overline{u_j'\frac{\partial u_i'}{\partial x_j}} = \\&-\frac{1}{\rho}\frac{\partial \overline{p}}{\partial x_i} + \frac{1}{\rho}\frac{\partial \cancel{\overline{p'}}}{\partial x_i} + \nu\frac{\partial^2 \overline{u_i}}{\partial x_j\partial x_j} + \nu\frac{\partial^2 \cancel{\overline{u_i'}}}{\partial x_j\partial x_j}
\end{align}
$
In the above equations, we have used the facts that the flow is stationary, so the mean flow is time-independent, and that the average of any fluctuating quantity is zero.
We are left with
$
\overline{u_j}\frac{\partial \overline{u_i}}{\partial x_j} + \overline{u_j'\frac{\partial u_i'}{\partial x_j}} = -\frac{1}{\rho}\frac{\partial \overline{p}}{\partial x_i} + \nu\frac{\partial^2 \overline{u_i}}{\partial x_j\partial x_j}
$
[[MHD RANS equations|Generalization of the RANS equations to MHD]]
## Explainer video (under construction)
![[slide1.mp4]]